首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work layers of colloidal nanoparticles obtained by thermolysis of Co2(CO8) were deposited on substrate surface by drying a drop in air eventually combined with the application of a magnetic field, or by spin coating. The formation of arrays of particles on Si substrates covered by Si3N4 layer was studied by high-resolution scanning electron microscopy and particle arrays on carbon coated copper grids by transmission electron microscopy. The crystalline structure of Co particles and its temperature evolution were analyzed by X-ray diffraction in situ in He gas and ex situ in UHV up to 700 °C. Two-dimensional (2-D) arrays of particles were formed by different types of preparation. The most regular ordering was obtained with the application of magnetic field perpendicular to the substrate surface, where 2-D hexagonal ordered arrays with length and width both between 200 and 500 nm were observed. In external magnetic field also three-dimensional arrays of nanoparticles–columns were formed. In the as-deposited state the nanoparticles show a poorly developed fcc crystalline structure. Most significant structural changes appear in the temperature range 400–450 °C where a well-developed fcc Co phase forms.  相似文献   

2.
A well-known Cluster–Cluster Aggregation (CCA) model is used for researching some self-organizing aggregations of colloidal nanoparticles. Novelty of exploration is assuming that a set of Shannon's information entropy maximums in the aggregate topological graph determines a trend of hydrosols' coagulation process, including integration of Ultra Dispersible Diamond (UDD). Taking under consideration a set of cubic-formed nanoclusters, which occupy minimal cubic cages of 30 × 30 × 30 and 60 × 60 × 60 cells in physical space, virtual nanoscale agglomerates are synthesized at different concentrations of clusters. Analyzing the nanosynthetics is fulfilled by usage the aggregate topological graphs, in which vertexes and ribs denote nanoclusters and their mutual bonds, respectively. It is revealed that decreasing of intrinsic energy (enthalpy) determines driving force of the agglomeration process and at the same time the topological information entropy is the controlling factor of the self-assembly morphology. Mutual correlations between porosity, fractal dimension, specific surface area, intrinsic energy, and topological information entropy of aggregates are presented. It is shown that theoretically minimal fractal dimension Dmin = 2.21 of self-assembling dispersible “loose gel”, is actually the same, in comparison with experimental value for colloidal UDD.  相似文献   

3.
Technical Physics Letters - Methods of nanolithographic self-assembly of colloidal nanoparticles have been created, which are promising for the development of fractal nanolithography.  相似文献   

4.
Jeong E  Kim K  Choi I  Jeong S  Park Y  Lee H  Kim SH  Lee LP  Choi Y  Kang T 《Nano letters》2012,12(5):2436-2440
Owing to their novel optical properties, three-dimensional plasmonic nanostructures with reduced symmetry such as a nanocrescent and a nanocup have attracted considerable current interest in biophotonic imaging and sensing. However, their practical applications have been still limited since the colloidal synthesis of such structures that allows, in principle, for in vivo application and large-scale production has not been explored yet. To date, these structures have been fabricated only on two-dimensional substrates using micro/nanofabrication techniques. Here we demonstrate an innovative way of breaking symmetry of colloidal plasmonic nanoparticles. Our strategy exploits the direct overgrowth of Au on a hybrid colloidal dimer consisting of Au and polystyrene (PS) nanoparticles without the self-nucleation of Au in an aqueous solution. Upon the overgrowth reaction, the steric crowding of PS leads to morphological evolution of the Au part in the dimer ranging from half-shell, nanocrescent to nanoshell associated with the appearance of the second plasmon absorption band in near IR. Surface-enhanced Raman scattering signal is obtained directly from the symmetry-broken nanoparticles solution as an example showing the viability of the present approach. We believe our concept represents an important step toward a wide range of biophotonic applications for optical nanoplasmonics such as targeting, sensing/imaging, gene delivery, and optical gene regulations.  相似文献   

5.
We describe recent developments in the synthesis of semiconductor nanoparticles, which lead to a substantial improvement of the luminescence quantum efficiency. Concerning a theoretical model for the growth of an ensemble of nanoparticles, the highest quantum efficiencies are achieved in particles that grow under conditions of a rapid exchange of monomers at the particle surface, leading to a smooth surface structure. Selective etching, core-shell formation and doping of nanoparticles are also discussed as fluorescence-enhancing preparative techniques. Examples of self-assembly of almost-uniformly-sized nanoparticles are given, which result in two-dimensional and three-dimensional superlattices, colloidal crystals and crystalline structures built-up from particles of different sizes. Finally, the self-assembled oriented attachment of quasi-spherical ZnO nanoparticles onto single-crystalline nanorods is presented.  相似文献   

6.
Monodisperse gold nanoparticles protected by small organic molecules or by macromolecules with different sizes and shapes are widely used as a precursor material in various applications of gold nanotechnology. However, their preparation is still a formidable task. In this paper the use of photochemically assisted syntheses of monodisperse gold nanoparticles is summarized and some preparations by the authors’ group are introduced. These include spherical and rod-like particles, bimetallic composite nanoparticles, and syntheses using complex intramolecular photoreduction to generate the reducing agent.  相似文献   

7.
CdTe nanorribons were successfully synthesized from individual nanoparticle. Slow oxidation of Te(2-) in CdTe nanoparticles resulted in the assembly of ribbons consisting of several layers of individual nanocrystals. The light-controlled self-assembly of CdTe nanoparticles led to twisted ribbons with variable pitch. Transmission electron microscopy, scanning electron microscopy, and atomic force microscopy were performed to characterize the synthesized nanostructures. The suggested synthetic procedure provides a viable pathway for the fabrication of nanomaterials with helical conformations.  相似文献   

8.
We report here preliminary studies of biocidal effects and cellular internalization of ZnO nanoparticles on Escherichia coli bacteria. ZnO nanoparticles were synthesized in di(ethylene glycol) (DEG) medium by forced hydrolysis of ionic Zn2+ salts. Particle size and shape were controlled by addition of small molecules and macromolecules such as tri-n-octylphosphine oxide, sodium dodecyl sulfate, polyoxyethylene stearyl ether, and bovine serum albumin. Transmission electron microscopy (TEM) and X-ray diffraction analyses were used to characterize particle structure, size, and morphology. Bactericidal tests were performed in Luria-Bertani medium on solid agar plates and in liquid systems with different concentrations of small and macromolecules and also with ZnO nanoparticles. TEM analyses of bacteria thin sections were used to study biocidal action of ZnO materials. The results confirmed that E. coli cells after contact with DEG and ZnO were damaged showing a Gram-negative triple membrane disorganization. This behavior causes the increase of membrane permeability leading to accumulation of ZnO nanoparticles in the bacterial membrane and also cellular internalization of these nanoparticles.  相似文献   

9.
Room temperature synthesis of colloidal platinum nanoparticles   总被引:3,自引:0,他引:3  
Efficient preparation of stable dispersions of platinum nanoparticles from platinous chloride (K2PtCl4) was achieved by simultaneous addition of capping polymer material. The size of platinum nanoparticles was controlled by changing the ratio of concentration of capping polymer material to the concentration of platinum cation used. The morphology of colloidal particles were studied by means of UV-visible spectrophotometry and transmission electron microscopy (TEM). Particle size increased with low reagent concentration. The change in absorption spectra with the particle size was observed, i.e. blue shift attributed to decrease in particle size Paper presented at the 5th IUMRS ICA98, October 1998, Bangalore.  相似文献   

10.
Colloidal Co particles of 11 nm diameter were deposited on Si substrate by spin coating and/or casting in magnetic field. A perpendicular magnetic field varying along the diagonal of the substrate was also applied. The samples were analyzed by transmission electron microscopy (TEM), field emission gun scanning electron microscopy (SEM-FEG), atomic and magnetic force microscopy (AFM/MFM). TEM micrographs show local order when a Co nanoparticle monolayer is deposited on Si. Drying the colloidal solution in a magnetic field leads to the formation of quite large clusters (0.3 μm) of Co nanoparticles. A stripe structure was then observed when the particles were deposited by casting in the varying magnetic field. AFM/MFM measurements show isolated Co clusters on the stripes. Magnetic features corresponding to the single Co cluster have been observed pointing out that all magnetic moments in the cluster are oriented along the field direction.  相似文献   

11.
12.
Emergence of novel two-dimensional (2-D) templates, e.g., graphene oxide, has signified new intriguing opportunities to couple nanocrystals electronically to the microscopic 2-D contacts. A promising approach to uniform dispersion of inorganic nanocrystals on the 2-D interfaces is to graft them through chemical bonding. The 2-D dispersion would offer a unique opportunity to address one of the primary challenges in the field of nanotechnology: fulfilling excellent chemical and physical properties of the nanocrystals in electronic solid-state devices. In this study, we blended colloidal nanocrystals with graphene oxide in aqueous solution in attempts to bind the nanocrystals on reactive sites of the graphene oxide surface, thereby achieving uniform loading. Interestingly, the nanocrystals undergo significant crystalline transformation even under relatively moderate reaction conditions. The growth of particle size and the drastic crystalline deformation, e.g., from wurtzite CdSe to amorphous Se, appear to take place in the proximity of acidic functional groups on graphene oxide. Photocarriers also play a key role in the reaction: under room light, the transformation yielded dramatic size increase and crystalline transformation, whereas in the dark, the change was suppressed. The experimental results presented in this study provide guidelines for uniform 2-D loading of colloidal nanocrystals on graphene oxide. The findings suggest that the surface acidity be titrated for colloidal nanocrystals to deposit on the graphitic layer and to avoid unwanted changes of nanocrystal size and properties.  相似文献   

13.
Modular protein engineering is suited to recruit complex and multiple functionalities in single-chain polypeptides. Although still unexplored in a systematic way, it is anticipated that the positioning of functional domains would impact and refine these activities, including the ability to organize as supramolecular entities and to generate multifunctional protein materials. To explore this concept, we have repositioned functional segments in the modular protein T22-GFP-H6 and characterized the resulting alternative fusions. In T22-GFP-H6, the combination of T22 and H6 promotes selfassembling as regular nanoparticles and selective binding and internalization of this material in CXCR4-overexpressing tumor cells, making them appealing as vehicles for selective drug delivery. The results show that the pleiotropic activities are dramatically affected in module-swapped constructs, proving the need of a carboxy terminal positioning of H6 for protein self-assembling, and the accommodation of T22 at the amino terminus as a requisite for CXCR4^+ cell binding and internalization. Furthermore, the failure of self-assembling as regular oligomers reduces cellular penetrability of the fusions while keeping the specificity of the T22-CXCR4 interaction.All these data instruct how multifunctional nanoscale protein carriers can be designed for smart, protein-driven drug delivery, not only for the treatment of CXCR4^+ human neoplasias, but also for the development of anti-HIV drugs and other pathologies in which CXCR4 is a relevant homing marker.  相似文献   

14.
Jin Y  Wang J  Sun B  Blakesley JC  Greenham NC 《Nano letters》2008,8(6):1649-1653
A "visible-blind" solution-processed UV photodetector is realized on the basis of colloidal ZnO nanoparticles. The devices exhibit low dark currents with a resistance >1 TOmega and high UV photocurrent efficiencies with a responsivity of 61 A/W at an average intensity of 1.06 mW/cm(2) illumination at 370 nm. The characteristic times for the rise and fall of the photocurrent are <0.1 s and about 1 s, respectively. The photocurrent of the device is associated with a light-induced desorption of oxygen from the nanoparticle surfaces, thus removing electron traps and increasing the free carrier density which in turn reduces the Schottky barrier between contacts and ZnO nanoparticles for electron injection. The devices are promising for use in large-area UV photodetector applications.  相似文献   

15.
A method has been proposed for the synthesis of stable colloidal solutions of lead sulfide nanoparticles from aqueous lead acetate and sodium sulfide solutions. The citrate ion and ethylenediaminetetraacetic acid were used as complexing agents to stabilize the solution. The solutions obtained were shown to remain stable at room temperature for at least 30 days from the instant of synthesis, depending on the initial reactant concentration. According to X-ray diffraction and dynamic light scattering data, the stability and coagulation of the nanoparticles in solution were influenced by the lead and sulfur concentration, the presence of complexing agents, and the quantitative relation between the lead and complexing agent ions in solution. Optical absorption measurements for the colloidal PbS nanoparticle solutions showed that their absorbance was a nonlinear function of reactant concentration.  相似文献   

16.
Crystalline ZnO quantum dots have been synthesized by hydrolysis of zinc acetate dihydrate with lithium hydroxide in ethanolic solution. By varying different parameters of the synthesis process, the size of the ZnO particles can be controlled. Detailed investigation of the ripening of the nanoparticles evidenced that despite of the well-known influence of ageing temperature and time, the presence of the reaction byproduct lithium acetate strongly affects the ripening behaviour. In particular, the particle size can be almost completely arrested by the removal of this byproduct via reversible flocculation of the ZnO nanoparticles using heptane as an antisolvent. A closer analysis of the repeated washing process shows an initial improvement of the colloidal stability of the ZnO nanoparticles during the first purification cycle as it mainly removes the lithium acetate from the suspension and not the stabilizing acetate groups directly bound to the particle surface. With further washing the remaining acetate ligands are unable to maintain the stabilization against agglomeration of the ZnO nanoparticles. Thus, there exists an optimum between purification progress and colloidal stability. These findings are also confirmed by calculations according to the DLVO theory, which show that there exists nearly no primary minimum of small ZnO nanoparticles below 5 nm in the presence of stabilizing acetate ions whereas the decrease in acetate ions bound to the particle surface leads to a more and more pronounced primary minimum. The present work is of particular significance for the preparation of purified colloidal ZnO nanoparticles for studies of their electrical and optical properties with respect to their wide range of potential applications.  相似文献   

17.
Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles   总被引:3,自引:0,他引:3  
Cytotoxicity of CdSe and CdSe/ZnS nanoparticles has been investigated for different surface modifications such as coating with mercaptopropionic acid, silanization, and polymer coating. For all cases, quantitative values for the onset of cytotoxic effects in serum-free culture media are given. These values are correlated with microscope images in which the uptake of the particles by the cells has been investigated. Our data suggest that in addition to the release of toxic Cd(2+) ions from the particles also their surface chemistry, in particular their stability toward aggregation, plays an important role for cytotoxic effects. Additional patch clamp experiments investigate effects of the particles on currents through ion channels.  相似文献   

18.
A facile sonochemical method was developed for preparing colloidal silver nanoparticles (Ag-NPs) in aqueous gelatin solutions. The effect of the reducing agent and Ag+ concentrations, ultrasonic time, and ultrasonic amplitude on the particle size has been investigated. The size of the Ag-NPs decreases with the ultrasonic amplitude and increases with ultrasonic time. Well-dispersed spherical Ag-NPs with a mean particle size of about 3.5 nm have been synthesized under ultrasonic process. The use of gelatin as an eco-friendly stabilizer provides green and economic attributes to this work. This preparation method is general and may be extended to other noble metals, such as Au, Pd and Pt, and may possibly find various additional medicinal, industrial and technological applications.  相似文献   

19.
A designer self-assembling peptide nanofiber scaffold has been systematically studied with 10 commonly used scaffolds in a several week study using neural stem cells (NSC), a potential therapeutic source for cellular transplantations in nervous system injuries. These cells not only provide a good in vitro model for the development and regeneration of the nervous system, but may also be helpful in testing for cytotoxicity, cellular adhesion, and differentiation properties of biological and synthetic scaffolds used in medical practices. We tested the self-assembling peptide nanofiber scaffold with the most commonly used scaffolds for tissue engineering and regenerative medicine including PLLA, PLGA, PCLA, collagen I, collagen IV, and Matrigel. Additionally, each scaffold was coated with laminin in order to evaluate the utility of this surface treatment. Each scaffold was evaluated by measuring cell viability, differentiation and maturation of the differentiated stem cell progeny (i.e. progenitor cells, astrocytes, oligodendrocytes, and neurons) over 4 weeks. The optimal scaffold should show high numbers of living and differentiated cells. In addition, it was demonstrated that the laminin surface treatment is capable of improving the overall scaffold performance. The designer self-assembling peptide RADA16 nanofiber scaffold represents a new class of biologically inspired material. The well-defined molecular structure with considerable potential for further functionalization and slow drug delivery makes the designer peptide scaffolds a very attractive class of biological material for a number of applications. The peptide nanofiber scaffold is comparable with the clinically approved synthetic scaffolds. The peptide scaffolds are not only pure, but also have the potential to be further designed at the molecular level, thus they promise to be useful for cell adhesion and differentiation studies as well as for future biomedical and clinical studies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号