首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Catalytic oxidations of volatile organic compounds (VOCs) (benzene, toluene and o-xylene) over 1 wt% Pd/γ-Al2O3 catalyst were carried out to assess the properties and performance of the Pd based catalyst. The properties of the prepared catalysts were characterized by the Brunauer Emmett Teller (BET) surface area, H2 chemisorption, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and transmission electron microscopy (TEM) analyses. The experimental results revealed a significant increase in VOCs conversion with the lapse of the reaction time at certain reaction temperatures. On the other hand, the hydrogen pretreated 1 wt% Pd/γ-Al2O3 catalyst, whose shape of conversion curve is similar to the non pretreated catalyst, led the conversion curves for the total oxidation of VOCs to be shifted to lower temperature. It was also found that such increases in VOCs conversion were highly dependent on the oxidation state of Pd and the growth of Pd particles in the catalyst. In addition, in the case of the catalyst consisting of the same oxidation state (PdO/Pd2+ or Pd0), the particle sizes possibly play a more important role in the catalytic activity. The activity order of 1 wt% Pd/γ-Al2O3 catalyst with respect to the VOC molecule was o-xylene > toluene > benzene.  相似文献   

2.
Nano-crystalline cerium oxide catalysts have been prepared by precipitation and evaluated for the total catalytic oxidation of naphthalene, which is a polycyclic aromatic hydrocarbon (PAH). Ceria synthesised by precipitation with urea was the most active catalyst for oxidation of naphthalene to carbon dioxide. The urea precipitated CeO2 demonstrated over 90% naphthalene conversion to carbon dioxide at 175°C (100 ppm naphthalene, GHSV=25,000 h−1), whilst ceria precipitated via a carbonate only gave 90% conversion at 275°C. Comparison with known high activity total oxidation catalysts, Mn2O3 and 0.5% Pt/γ-Al2O3, showed that the urea precipitated CeO2 was a more effective catalyst for naphthalene total oxidation. At temperatures below those required to achieve catalytic activity the adsorption capacity of urea precipitated ceria for naphthalene was considerably greater than any of the other catalysts examined. The high adsorption capacity of the material provides the advantage that it can be used as a combined catalyst and adsorbent to remove PAHs from waste streams.  相似文献   

3.
Pd catalysts supported on TiO2, ZrO2, ZSM-5, MCM-41 and activated carbon were used in catalytic wet oxidation of hydrocarbons such as phenol, m-cresol and m-xylene. It was found that the Pd/TiO2 catalyst was highly effective in the wet oxidation of hydrocarbon. The activities of catalysts with various hydrocarbon species, catalyst support, oxidation state of catalyst performed in a 3-phase slurry reactor show that reaction on Pd surface is more favorable than that in aqueous phase and that the active site is oxidized Pd in catalytic wet air oxidation of hydrocarbons. Based on the experimental results, a plausible reaction mechanism of wet oxidation of hydrocarbons catalyzed over Pd/TiO2 catalyst was proposed. This catalyst is superior to other oxide catalysts because it suppressed the formation of hardly-degradable organic intermediates and polymer.  相似文献   

4.
A plasma/catalyst hybrid reactor was designed to overcome the limits of plasma and catalyst technologies. A two-plasma/catalyst hybrid system was used to decompose VOCs (toluene) and NOx at temperature lower than 150 °C. The single-stage type (Plasma-driven catalyst process) is the system in which catalysts are installed in a non-thermal plasma reactor. And the two-stage type (Plasma-enhanced process) is the system in which a plasma and a catalyst reactor are connected in series. The catalysts prepared in this experiment were Pt/TiO2 and Pt/Al2O3 of powder type and Pd/ZrO2, Pt/ZrO2 and Pt/Al2O3 which were catalysts of honeycomb type. When a plasma-driven catalyst reactor with Pt/Al2O3 decomposed only toluene, it removed just more 20% than the only plasma reactor but the selectivity of CO2 was remarkably elevated as compared with only the plasma reactor. In case of decomposing VOCs (toluene) and NOx using plasma-enhanced catalyst reactor with Pt/ZrO2 or Pt/Al2O3, the conversion of toluene to CO2 was nearly 100% and about 80% of NOx was removed. This work was presented at the 6 th Korea-China Workshop on Clean Energy Technology held at Busan, Korea, July 4–7, 2006.  相似文献   

5.
Catalytic combustion of benzene over supported metal oxides has been investigated. The catalysts have been prepared by incipient wetness method and characterized by XRD, FT-Raman, ESR and TPR. Among supported metal oxides, CuOx, supported on TiO2 is found to have the highest activity for benzene oxidation. In addition, among the catalysts of copper oxide supported on TiO2, A12O3 and SiO2, titania-supported catalyst (CuOx/TiO2) gives the highest catalytic activity. CuOx/TiO2 (Cu loading 5.5 wt%) shows the total oxidation of benzene at about 250 °C. From the ESR and FT-Raman results, the CuO dispersed on the TiO2 surface acts as an active site of CuOx/TiO2 catalysts on the oxidative decomposition of benzene. The catalytic activity gradually increases with an increase of Cu loading on TiO2. When Cu loading reaches 5.5 wt%, the total conversion temperature is lowered to 300 °C. However, the catalytic activity considerably decreases at 7 wt% Cu loading. The catalytic activity increased with an increase of oxygen concentration but the concentration of benzene showed no difference in the benzene conversion. This result suggests that the rate determining step is the adsorption of oxygen.  相似文献   

6.
A novel catalyst for CO oxidation at low temperature   总被引:4,自引:0,他引:4  
Supported catalysts of palladium over ceria–titania mixed oxides (Pd/CeO2–TiO2) were prepared and tested for carbon monoxide oxidation. The catalysts exhibited high catalytic activity at room temperature. The Pd/CeO2–TiO2 catalyst was more active than Pd/CeO2, Pd/SnO2–TiO2, Pd/ZrO2–TiO2, Pd/Al2O2–TiO2 and Pd/TiO2 catalysts under the same conditions examined. The effects of preparation methods of the support, the mole ratio of ceria and titania in mixed supports as well as Pd loading upon the catalytic activity of CO oxidation were investigated. Among the Pd/CeO2–TiO2 catalysts, the best one corresponds to the Pd loading of 1.0 wt% or above, and the mole ratio of ceria and titania ranging from 1 : 7 to 1 : 5. The steady-state catalytic performance of such catalyst was recorded without any deactivation over 8 h time-on-stream in the present study. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Volatile organic compounds (VOCs) are one of the main contributors to air pollution. To reduce anthropogenic emissions, it is necessary to improve existing techniques such as catalytic oxidation through the development of new cost‐effective catalysts. Although many studies deal with the development and testing of new materials, most are performed at laboratory scale, of which only a few study mixtures of VOCs. To assess their viability for industrial applications, further tests are required, namely, mixture tests at intermediate scale in relevant environment and extrapolated on an industrial scale. In this work, the catalytic performance of a new mixed oxide Co‐Al‐Ce was investigated towards the oxidation of the n‐butanol and toluene on a semi‐pilot scale (TRL 4). Single component and mixture experiments were performed for several concentrations at a fixed flow rate. A commercial catalyst Pd/γ‐Al2O3 was used as the benchmark to evaluate the performance of the mixed oxide. The Co‐Al‐Ce catalyst enables complete oxidation of n‐butanol at the same temperature as the reference catalyst. Moreover, it provides a better selectivity for n‐butanol, while providing an equivalent one for the oxidation of toluene. In mixtures, the presence of n‐butanol promotes the oxidation of toluene for both catalysts but more significantly for the Co‐Al‐Ce catalyst. The presence of toluene inhibits the oxidation of n‐butanol for the Co‐Al‐Ce and promotes it for high conversions of n‐butanol for the Pd/γ‐Al2O3 catalyst.  相似文献   

8.
Uranium oxide based catalysts have been investigated for the oxidative destruction of volatile organic compounds (VOCs) to carbon oxides and water. The catalysts have been tested for the destruction of a range of organic compounds at space velocities up to 70 000 h−1. Destruction efficiencies greater than 99% can be achieved over the appropriate uranium based catalyst in the temperature range 300–450°C. Volatile organic compounds investigated include benzene, butylacetate, cyclohexanone, toluene, methanol, acetylene, butane, chlorobutane and chlorobenzene. The catalysts are thermally stable, destroy low concentrations and mixtures of VOCs and lifetime studies indicate that deactivation during oxidation of chlorinated VOCs did not occur. A temporal analysis of products (TAPs) reactor is used to investigate the mechanism of oxidation of VOCs by uranium oxide catalysts. Studies indicated that VOCs were oxidised directly to carbon oxides on the catalyst surface. A combination of TAP pulse experiments with oxygen present and absent in the gas phase has indicated that the lattice oxygen from the catalyst is responsible for the total oxidation activity. This has been confirmed by studies using isotopically labelled oxygen which indicates that the catalyst operates by a redox mechanism.  相似文献   

9.
The nanocatalysts of Pd nanocubes supported on SiO2, TiO2 and MgO were prepared and the CO oxidation activities over the three catalysts were evaluated. The acid–basic properties of the support materials were determined using the temperature-programmed desorptions of NH3 (NH3-TPD) and CO2 (CO2-TPD). The CO adsorptions over the three catalysts were investigated by the diffuse reflectance infrared Fourier transform (DRIFT). It was found that the Pd/MgO catalyst showed the strongest ability to adsorb CO molecules and performed best for CO oxidation.  相似文献   

10.
Supported gold, palladium and gold–palladium catalysts have been used to oxidatively dehydrogenate cyclohexane and cyclohexenes to their aromatic counterpart. The supported metal nanoparticles decreased the activation temperature of the dehydrogenation reaction. We found that the order of reactivity was Pd ≥ Au–Pd > Au supported on TiO2. Attempts were made to lower the reaction temperature whilst retaining high selectivity. The space-time yield of benzene from cyclohexane at 473 K was determined to be 53.7 mol/kgcat/h rising to 87.3 mol/kgcat/h at 673 K for the Pd catalyst. Increasing the temperature in this case improved conversion at a detriment to the benzene selectivity. Oxidative dehydrogenation of cyclohexene over AuPd/TiO2 or Pd/TiO2 catalysts was found to be very effective (conversion >99% at 423 K). These results indicate that the first step in the reaction sequence of cyclohexane to cyclohexene is the slowest step. These initial results suggest that in a fixed-bed reactor the oxidative dehydrogenation in the presence of oxygen, palladium and gold–palladium catalysts are readily able to surpass current literature examples and with further modification should yield even higher performance.  相似文献   

11.
Initial reaction steps in photocatalytic oxidation of aromatics   总被引:3,自引:0,他引:3  
Transient reaction at 273 and 300 K was used to study the initial steps in the photocatalytic oxidation (PCO) of benzene, toluene, p-xylene, mesitylene, benzyl alcohol, benzaldehyde, and m-cresol adsorbed on a thin film of TiO2 catalyst. Adsorbed aromatics were oxidized by O2 photocatalytically in the absence of gas-phase aromatics, and the compounds remaining on the surface were characterized by temperature-programmed oxidation and desorption (TPO, TPD). Benzene and methyl benzenes oxidize rapidly at 273 or 300 K to form adsorbed intermediates that are more strongly adsorbed and much less reactive than the original aromatic, which is relatively weakly adsorbed on TiO2. The catalyst is expected to be covered with these intermediates during steady-state reaction. The rates of PCO of benzene and methyl benzenes to CO2 are slow relative to complete oxidation of alcohols or chlorinated hydrocarbons. The intermediates do not appear to be alcohols or aldehydes formed by oxidation of a methyl group, nor do they correspond to addition of an hydroxyl to the aromatic ring. Benzyl alcohol oxidizes photocatalytically to benzaldehyde and then to CO2 and H2O during PCO, but adsorbed m-cresol does not photocatalytically oxidize.  相似文献   

12.
SBA-3 mesoporous molecular sieves doped with transition metal ions (Fe, V, Nb and Ta) have been applied for selective oxidation of propene towards propylene oxide in the presence of N2O as an oxidant. The kind and amount of applied modifiers significantly affected the catalytic activity. V/SBA-3 was found to be the most active among the catalyst under study. In spite of relatively high selectivity towards propylene oxide (reaching up to 23%), the main oxidation product was still propionaldehyde. Surprisingly, COx was not formed over V, Nb and Ta modified SBA-3 catalysts. Additional modification of V containing samples (V/SBA-3) with iron complexes resulted in the further increase in the catalysts activity for epoxidation reaction. A PO selectivity of about 20% could be achieved at a propylene conversion of 17% over mixed Fe/V/SBA-3 catalytic system.  相似文献   

13.
Hydrogenation of acetylene has been investigated on Au/TiO2, Pd/TiO2 and Au-Pd/TiO2 catalysts at high acetylene conversion levels. The Au/TiO2 catalyst (avg. particle size: 4.6 nm) synthesized by the temperature-programmed reduction-oxidation of an Au-phosphine complex on TiO2 showed a remarkably high selectivity to ethylene formation even at 100% acetylene conversion. Au/TiO2 prepared by the conventional incipient wet impregnation method (avg. particle size: 30 nm), on the other hand, showed negligible activity for acetylene hydrogenation. Although the Au catalysts showed a high selectivity for ethylene, the acetylene conversion activity and catalyst stability were inferior to the Pd-based catalysts. Au-Pd catalysts prepared by the redox method showed high acetylene conversions as well as high selectivity for ethylene. Interestingly Au-Pd catalysts prepared by depositing Pd via the incipient wetness method on Au/TiO2 showed very poor selectivity (comparable to mono-metallic Pd catalysts) for ethylene. High-resolution transmission electron microscopy (TEM) studies coupled with energy dispersive X-ray spectroscopy (EDS) showed that while the redox method produced bimetallic Au-Pd catalysts, the latter method produced individual Pd and Au particles on the support.  相似文献   

14.
Zirconia-supported and bulk-mixed vanadiumantimonium oxide catalysts were used for the oxidation of o-xylene to phthalic anhydride. X-ray diffraction, Raman spectroscopy and photoelectron spectroscopy were used for characterization. It was found that vanadium promotes the transition of tetragonal to monoclinic zirconia. The simultaneous presence of Sb and V on zirconia at low coverage led to a preferential interaction of individual V and Sb oxides with the zirconia surface rather than the formation of a binary Sb-V oxide, while at higher Sb-V contents the formation of SbVO4 took place. Sb-V/ZrO2 catalysts showed high activity for o-xylene conversion and better selectivity to phthalic anhydride as compared to V/ZrO2 catalysts. However, their selectivity to phthalic anhydride was poor in comparison to a V/TiO2 commercial catalyst. The improved selectivity of the Sb-containing catalysts is attributed to the blocking of non-effective surface sites of ZrO2, the decrease of the total amount of acid sites and the formation of surface V-O-Sb-O-V structures.  相似文献   

15.
Differences in the Total Oxidation of Organic Compounds on Heterogeneous Pt- and Pd-Catalysts The catalytic oxidation of selected organic compounds was studied on supported Pd and Pt catalysts and on massive wires. Unfunctionalized (Decane), unsaturated (dodecene, benzene), oxygen containing (1-octanol, formaldehyde, acetone, n-butylacetate, formic acid), nitrogen containing (aniline, pyridine), sulfur containing (thiophene) and chlorinated (1,2-dichloroethane) hydrocarbons were used as model compounds. The relative activity of the metals for oxidation of the various compounds was determined from the turnover frequencies. While platinum is more active for the oxidation of the unfunctionalized, aromatic and chlorinated compounds, palladium is more active for nitrogen and sulfur containing compounds and for formic acid. No specificity is found for alkenes and compounds with a lower oxygen content. In the presence of octane, the unreactive pyridine is much more effectively oxidized than pyridine alone. There are distinct differences for the oxidation of octane/pyridine mixtures on bimetallic, mixed and pure Pt- and Pd-catalysts. The bimetallic catalyst and the pure Pt-catalyst dominate with respect to conversion and selectivity. The oxidation of linear alkanes on Pt correlates with the boiling point. Pd catalyzes the oxidation of lower hydrocarbons (< C5) better, while higher hydrocarbons ( > C5) are better oxidized by Pt.  相似文献   

16.
Catalytic combustion of volatile organic compounds (VOCs), present in low concentrations (10–1000 ppm) in industrial effluent streams, is a promising air abatement technology. The oxidation of benzene, butanol and ethyl acetate over group VII metal catalysts supported on alumina carriers has been investigated. Pt, Pd and Co were found to be the most active among group VIII metals, while ethyl acetate was found to be the most-difficult-to-oxidize compound. Benzene and ethyl acetate oxidations over Pt/Al2O3 were found to be structure sensitive reactions with the turnover frequency (TOF) increasing with increasing mean metal particle size. The presence of chloride on the catalyst surface, originating from chloride-containing metal precursor compounds was found to exert an inhibiting effect on the activity of Pt. Apparent activation energies of the reactions over Pt and Pd catalysts were found to be in the 70–120 kJ/mol range while the reaction order with respect to the VOC was positive in all cases. During oxidation of benzene-butanol mixtures, benzene oxidation was completely suppressed as long as butanol was present in the reaction mixture.  相似文献   

17.
The destruction of volatile organic compounds (VOCs) by labile species formed from O3 on an ozone-decomposition catalyst (ODC) was investigated with and without UV irradiation. Toluene was decomposed to CO2 on the ODC surface in the presence of O3, even in darkness. A mixed catalyst consisting of the ODC and TiO2 produced higher VOC removals and CO2 conversions, especially in the presence of UV irradiation and high O3 concentrations. Although humidity hindered the destruction of VOCs by the ODC, this problem was mitigated by using the mixed catalyst. Significant suggestions are made for the utilization of ODCs in VOC destruction.  相似文献   

18.
A range of titania supported palladium catalysts modified by the addition of vanadium have been prepared and tested for the total oxidation of short chain hydrocarbons. The addition of vanadium promoted the rates of oxidation at lower temperatures. Vanadium loadings between 0.5 and 3.0 wt.% were investigated and the most active catalyst was 0.5% Pd1.5% V/ TiO2. The addition of vanadium decreased the palladium dispersion, but temperature programmed reduction studies showed that the combination of palladium with vanadium dramatically increased the ease of catalyst reduction. It is proposed that the increased catalyst activity is related to the modified redox properties of the catalysts.  相似文献   

19.
《Journal of Catalysis》1999,181(2):175-188
The direct conversion of methane to aromatics such as benzene and naphthalene has been studied on a series of Mo-supported catalysts using HZSM-5, FSM-16, mordenite, USY, SiO2, and Al2O3as the supporting materials. Among all the supports used, the HZSM-5-supported Mo catalysts exhibit the highest yield of aromatic products, achieving over 70% total selectivity of the hydrocarbons on a carbon basis at 5–12% methane conversion at 973 K and 1 atm. By contrast, less than 20% of the converted methane is transformed to hydrocarbon products on the other Mo-supported catalysts, which are drastically deactivated, owing to serious coke formation. The XANES/EXAFS and TG/DTA/mass studies reveal that the zeolite-supported Mo oxide is endothermally converted with methane around 955 K to molybdenum carbide (Mo2C) cluster (Mo-C, C.N.=1,R=2.09 Å; Mo-Mo, C.N.=2.3–3.5;R=2.98 Å), which initiates the methane aromatization yielding benzene and naphthalene at 873–1023 K. Although both Mo2C and HZSM-5 support alone have a very low activity for the reaction, physically mixed hybrid catalysts consisting of 3 wt% Mo/SiO2+HZSM-5 and Mo2C+HZSM-5 exhibited a remarkable promotion to enhance the yields of benzene and naphthalene over 100–300 times more than either component alone. On the other hand, it was demonstrated by the IR measurement in pyridine adsorption that the Mo/HZSM-5 catalysts having the optimum SiO2/Al2O3ratios, around 40, show maximum Brönsted acidity among the catalysts with SiO2/Al2O3ratios of 20–1900. There is a close correlation between the activity of benzene formation in methane aromatization and the Brönsted acidity of Mo/HZSM-5, but not Lewis aciditiy. It was found that maximum benzene formation was obtained on the Moz/HZSM-5 having SiO2/Al2O3ratios of 20–49, but substantially poor activities on those with SiO2/Al2O3ratios smaller and higher than 40. The results suggest that methane is dissociated on the molybdenum carbide cluster supported on HZSM-5 having optimum Brönsted acidity to form CHx(x>1) and C2-species as the primary intermediates which are oligomerized subsequently to aromatics such as benzene and naphthalene at the interface of Mo2C and HZSM-5 zeolite having the optimum Brönsted acidity. The bifunctional catalysis of Mo/HZSM for methane conversion towards aromatics is discussed by analogy with the promotion mechanism on the Pt/Al2O3catalyst for the dehydro-aromatization of alkanes.  相似文献   

20.
We report here an efficient bifunctional catalyst of TiO2 coating and supported Pd on cordierite (T500/Cor&Pd/Cor) for one-pot synthesis of MIBK from acetone. The obtained 75% MIBK selectivity at 60% acetone conversion was the best performance ever reported for metal oxide based catalyst, without obvious deactivation for at least 12 h on stream. The superior performance of T500/Cor&Pd/Cor could be attributed to the dominant base sites and moderate acid sites on TiO2 coating caused by the nanoscale anatase crystallite, and its combination style of being physically mixed with Pd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号