首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Samaria-doped ceria (SDC) nanoparticles were prepared by spray pyrolysis. The means sizes of the samaria-doped ceria nanoparticles were controlled from 21 to 150 nm by changing the calcination temperatures between 700 and 1200 °C. The pellets formed from the SDC particles calcined at temperatures between 700 and 1000 °C had similar grain sizes between 0.75 and 0.82 μm. However, pellet formed from the SDC particles calcined at a temperature of 1200 °C had large grain size of 1.22 μm. The pellet formed from the SDC particles calcined at a temperature of 1000 °C had slightly smaller resistance of grain-boundary than those of the pellets formed from the SDC particles calcined at temperatures between 700 and 900 °C. However, the pellet formed from the SDC particles calcined at a temperature of 1200 °C had low resistance of grain-boundary. The pellet formed from the SDC particles calcined at a temperature of 1200 °C had conductivity of 44.65 × 10?3 S cm?1 at a measuring temperature of 700 °C that more twice than those of the pellets formed from the SDC calcined below 1000 °C.  相似文献   

2.
ZrB2–SiC composites were prepared by spark plasma sintering (SPS) at temperatures of 1800–2100 °C for 180–300 s under a pressure of 20 MPa and at higher temperatures of above 2100 °C without a holding time under 10 MPa. Densification, microstructure and mechanical properties of ZrB2–SiC composites were investigated. Fully dense ZrB2–SiC composites containing 20–60 mass% SiC with a relative density of more than 99% were obtained at 2000 and 2100 °C for 180 s. Below 2120 °C, microstructures consisted of equiaxed ZrB2 grains with a size of 2–5 μm and α-SiC grains with a size of 2–4 μm. Morphological change from equiaxed to elongated α-SiC grains was observed at higher temperatures. Vickers hardness of ZrB2–SiC composites increased with increasing sintering temperature and SiC content up to 60 mass%, and ZrB2–SiC composite containing 60 mass% SiC sintered at 2100 °C for 180 s had the highest value of 26.8 GPa. The highest fracture toughness was observed for ZrB2–SiC composites containing 50 mass% SiC independent of sintering temperatures.  相似文献   

3.
Porous ceramics were prepared by firing mixtures of talc (Mg3Si4O10(OH)2) and foamed glass particles (ceramic balloons, CB) with and without LiCl as a sintering acid. The mixing ratios of the starting materials were talc:CB = 7:3, 8:2, 9:1 and 10:0, with additions of LiCl of 0, 2 and 5 mass%. The mixtures were formed into pellets and fired at 600–1000 °C. The pellets without LiCl showed very poor strength even when fired at 1000 °C but those containing LiCl were much stronger, even when fired at only 600 °C. The crystalline phases in these samples changed to enstatite (MgSiO3) at ≥ 700 °C by decomposition of the talc under the fluxing action of the LiCl. The resulting samples were machinable and easily cut and drilled. The cutting rate decreased with increasing bending strength, for example, from 105 mm2/s and 6.3 MPa to 50 mm2/s and 16.3 MPa, respectively. The drilling rate of the present sample was found to be only slightly less than Teflon (polytetrafluoroethylene, PTFE) but much faster than graphite, glass ceramics, etc.  相似文献   

4.
Fabrication of Ni4Nb2O9 ceramics via a reaction-sintering process was investigated. A mixture of raw materials was sintered into ceramics by bypassing calcination and subsequent pulverization stages. Ni4Nb2O9 phase appeared at 1300 °C and increased with increasing soak time. Ni4Nb2O9 content was found >96% in 1350 °C/2 h sintering pellets. A density of 5.71 g/cm3 was obtained for pellets sintered at 1350 °C for 2 h. This reaches 96.5% of the theoretical density. As the sintering temperature increased to 1350 °C, an abnormal grain growth occurred and grains >100 μm could be found. ?r of 15.4–16.9 are found in pellets sintered at 1200–1300 °C. Q × f increased from 9380 GHz in pellets sintered at 1200 °C to 14,650 GHz in pellets sintered at 1250 °C.  相似文献   

5.
For low-temperature sintering, mixtures of AlN powder doped with 3.53 mass% Y2O3 and 0–2.0 mass% CaO as sintering additives were pulverized and dispersed in a vertical super-fine grinding mill with very small ZrO2 beads. The particle sizes achieved ranged between 50 and 100 nm after grinding for 90 min. The mixtures were then fired at 1000–1500 °C for 0–6 h under nitrogen gas pressure of 0.1 MPa. All nano-sized powders showed pronounced densification from 1300 °C as revealed by shrinkage measurement. The larger amounts of sintering additives enhanced AlN sintering at lower temperatures. Densified AlN ceramics with very fine and uniform grains of 0.3–0.4 μm were obtained at a firing temperature of 1500 °C for 6 h.  相似文献   

6.
Nano-sized Ba0.7Sr0.3TiO3 powders are prepared by post-treatment of the precursor powders with hollow and thin wall structure at temperatures between 900 and 1100 °C. Ethylenediaminetetraacetic acid and citric acid improve the hollowness of the precursor powders prepared by spray pyrolysis. The mean sizes of the powders post-treated at temperatures of 900, 1000 and 1100 °C are 42, 51 and 66 nm, respectively. The densities of the Ba0.7Sr0.3TiO3 pellets obtained from the powders post-treated at 900, 1000 and 1100 °C are each 5.36, 5.55 and 5.38 g cm?3 at a sintering temperature of 1300 °C. The pellet obtained from the powders post-treated at 1000 °C has higher maximum dielectric constant than those obtained from the powders post-treated at 900 and 1100 °C.  相似文献   

7.
High density uranium dioxide (UO2) pellets with grain sizes between 0.9 μm and 9 μm were produced by spark plasma sintering (SPS). A systematic study was performed by varying the sintering temperature between 750 °C and 1450 °C and hold time between 0.5 min and 20 min to obtain UO2 pellets with a range of theoretical densities (TD) and grain sizes. The microstructure development in terms of grain size, density and porosity distribution was investigated. The oxygen/uranium (O/U) ratio of the resulting pellets was found to decrease after SPS. The thermal conductivity of UO2 pellets increased with the theoretical density but the grain size in the investigated range had no significant influence. The measured thermal conductivity values up to 900 °C were consistent with the reported literature for conventionally sintered UO2 pellets. The benefits of using SPS over the conventional sintering of UO2 are summarized.  相似文献   

8.
Crystalline yttria and calcia doped ceria powder, with a composition of Ce0.8Y0.18Ca0.02O2?δ has been prepared by a coprecipitation procedure from the corresponding nitrates of component cations. Nanopowder was obtained after thermal treatment at 700 °C 2 h of the coprecipitated mixtures. Specific surface area was 45 m2/g. Isostatically and uniaxially pressed pellets were prepared from the powder. Sintering behaviour was followed by CHR dilatometer. Isothermal sintering was carried out between 1100 and 1300 °C. Apparent density as high as 98% Dth was attained by firing isostatically pressed pellets at 1150 °C 4 h. Uniaxially pressed pellets attained the same apparent density at 1275 °C 2 h, being in both cases very low the densification temperatures. Microstructure was observed by scanning electron microscopy (SEM). Ionic conductivity was determined by complex impedance spectroscopy. Bulk and grain boundary conductivities have similar values, and the total conductivity attains good value compatible with the use as electrolyte in solid oxide fuel cell (SOFC).  相似文献   

9.
《Ceramics International》2016,42(6):6619-6623
UO2 beads from the sol supported precipitation method were calcined at a low temperature in order to obtain porous micro-beads, composed of nanometric particles. The sintering behaviour of the beads in spark plasma sintering was investigated. The powder had a good sinterability and the final grain size of the pellets could be tailored by varying the processing conditions, in order to resemble the microstructure of the traditionally fabricated UO2 pellets (i.e. grains of several µm size), or to achieve sub-micrometre size as observed in the high burnup structure. Dense UO2 pellets with a grain size as small as 300 nm were obtained by sintering at 835 °C without dwell time, whereas 3 µm grained pellets were obtained at 1000 °C and a 5 min dwell time.  相似文献   

10.
Piezoelectric energy harvesting is the research hotspot in the field of new energy, and its core is to prepare piezoelectric ceramics with high transduction coefficient (d33 × g33) and large mechanical quality factor (Qm) as well. In addition, the miniaturization of the piezoelectric energy harvester also requires the material to have a submicron fine grain structure. In this work, submicron-structured ternary system, MnO2-doped Pb(Zn1/3Nb2/3)O3-Pb(Zr0.5Ti0.5)O3 was constructed by pressureless sintering of nanocrystalline powders, which has been synthesized for the first time by high-energy ball milling route thereby evading the calcination stage. The microstructure and the energy harvesting characteristics were tailored through changing the sintering temperature. It was found that 1000 °C sintered fine-grained specimen (mean grain size ∼0.95 μm) showed the maximum d33 × g33 value of 9627 × 10−15 m2/N, meanwhile Qm was as large as 774, which was almost seven times larger than pure counterpart. In the mode of the cantilever-type energy harvester, a high power density of 1.5 μW/mm3 were obtained for 1000 °C sintered specimen at a low resonance frequency of 90 Hz and acceleration of 10 m/s2, which were further increased to 29.2 μW/mm3 when the acceleration increased to 50 m/s2, showing the potential applications as a next generation high power multilayer energy harvester.  相似文献   

11.
《Ceramics International》2016,42(7):8240-8246
Aeschynite-type EuTiNbO6 fine phosphor with sufficient luminescence intensity was directly formed as homogeneous cuboid particles with high crystallinity in the range of 1–2 μm from precursor solution mixtures of EuCl3, TiOSO4, and NbCl5 under weakly basic conditions via hydrothermal treatment at 240 °C for 5 h. The as-prepared aeschynite phase stably existed after heating at 1000–1400 °C for 1 h in air. Under excitation at wavelengths of 395 nm, among all samples before and after heating in air, the as-prepared EuTiNbO6 fine crystals before heating emitted luminescence with the highest intensity in the red spectral region with strong red and weak orange light corresponding to 5D0→7F2 and 5D0→7F1 transitions of Eu3+, respectively. The amorphous coprecipitation powder crystallized into euxenite-type phase at 700–1000 °C and transformed into aeschynite-type phase at 1000–1200 °C. High-temperature heating at 1400 °C was essential for the coprecipitation powder to obtain almost a single phase of aeschynite-type EuTiNbO6 and sufficient emission intensity.  相似文献   

12.
The mechanical properties of zirconium diboride–silicon carbide (ZrB2–SiC) ceramics were characterized from room temperature up to 1600 °C in air. ZrB2 containing nominally 30 vol% SiC was hot pressed to full density at 1950 °C using B4C as a sintering aid. After hot pressing, the composition was determined to be 68.5 vol% ZrB2, 29.5 vol% SiC, and 2.0 vol% B4C using image analysis. The average ZrB2 grain size was 1.9 μm. The average SiC particles size was 1.2 μm, but the SiC particles formed larger clusters. The room temperature flexural strength was 680 MPa and strength increased to 750 MPa at 800 °C. Strength decreased to ~360 MPa at 1500 °C and 1600 °C. The elastic modulus at room temperature was 510 GPa. Modulus decreased nearly linearly with temperature to 210 GPa at 1500 °C, with a more rapid decrease to 110 GPa at 1600 °C. The fracture toughness was 3.6 MPa·m½ at room temperature, increased to 4.8 MPa·m½ at 800 °C, and then decreased linearly to 3.3 MPa·m½ at 1600 °C. The strength was controlled by the SiC cluster size up to 1000 °C, and oxidation damage above 1200 °C.  相似文献   

13.
《Ceramics International》2016,42(9):10951-10956
A Mo/Ti3SiC2 laminated composite is prepared by spark plasma sintering at 1300 °C under a pressure of 50 MPa. Al powder is used as sintering aid to assist the formation of Ti3SiC2. The fabricated composites were annealed at 800, 1000 and 1150 °C under vacuum for 5, 10, 20 and 40 h to study the composite's interfacial phase stability at high temperature. Three interfacial layers, namely Mo2C layer, AlMoSi layer and Ti5Si3 solid solution layer are formed during sintering. Experimental results show that the Mo/Ti3SiC2 layered composite prepared in this study has good interfacial phase stability up to at least 1000 °C and the growth of the interfacial layer does not show strong dependence on annealing time. However, after being exposed to 1150 °C for 10 h, cracks formed at the interface.  相似文献   

14.
Double perovskite Sr2FeMoO6 was prepared by two ways consisting in sol–gel technique and solid-state reaction method. The resulting powders from gel and mixed oxides precursors showed microstructures consisting of very fine grains (0.5–0.8 μm) and a crystalline perovskite structure. The structural and microstructural properties of the double perovskite Sr2FeMoO6 powders as-prepared and ceramics were compared. Tetragonal Sr2FeMoO6 pellets were prepared from the two powders by spark plasma sintering at: 1000, 1100 and 1200 °C and then annealing at 1200 °C, 2 h in 5%H2/Ar. The pellets presented different magnetic characteristics. The saturation magnetization of the samples prepared by sol–gel is close to those prepared by conventional synthesis method.  相似文献   

15.
Porous aggregations, with about 10 μm diameter, composed of Al2O3 platelet crystals were formed by heating a powder mixture consisting of Al2(SO4)3+2K2SO4 (mol ratio) in an alumina crucible at temperatures 1000–1300°C for 3 h and removing the flux component with hot hydrochloric acid after heating. The specific surface area of the aggregations obtained by heating at 1000°C for 3 h was maximum and its value was 5·2 m2 g−1. Since the size of Al2O3 platelets increased and the number of Al2O3 platelets decreased, the specific surface area decreased to 0·7 m2 g−1 at 1100°C. When heated at 1300°C, the size of the Al2O3 platelets increased with increasing amount of K2SO4 in the starting powder mixture. ©  相似文献   

16.
Eu2O3 ceramics have been obtained at sintering temperatures of between 1000 °C and 1550 °C. X-ray diffraction and scanning electron microscopy, in combination with dilatometry experiments, allowed understanding the sintering behaviour. Moderate grain growth followed an efficient densification process between 1400 °C and 1550 °C, which yielded high-density ceramics with an average grain size of 4 μm. The ceramics had Young modulus of 125 GPa, in agreement with the previously published data. The dense Eu2O3 ceramics were translucent (35.1% transmittance at 800 nm of 0.8 mm thick discs), showing in addition a slightly pink colour. We propose that the combination of high density and an average grain size of 4 μm is responsible for this novel functionality.  相似文献   

17.
Porous alumina ceramics with uni-directionally aligned pores were prepared by an extrusion method using 0–40 vol.% poly (vinyl acetate) (PVAC) as the pore former. A paste was prepared by mixing 25 mass% distilled water, 4 mass% methylcellulose, 8 mass% oleic acid and 0.8 mass% ammonium poly (carboxylic acid). This paste was molded into a 10 mm Ø body using a ram-type extruder, dried at room temperature for 24 h, calcined at 600 °C for 1 h and sintered at 1500 °C for 2 h in air. The PVAC added to the paste was homogeneously dispersed and formed particles 0.1–150 μm in size which extended in the extrusion direction and were converted to through-hole pores after sintering. The resulting pore size distribution in the samples was bimodal, centered at about 0.4 μm with a broad peak at about 70 μm dia. The resulting porous alumina ceramics showed high gas permeability because of their uni-directionally oriented through-hole pore structure.  相似文献   

18.
Structural, thermal and electrical properties studies of rubidium phosphite tellurate, RbH(PO3H)·Te(OH)6, were performed. An endothermic peak, which reached a completion at about 315 °C accompanied with a weight loss of 4.6 wt.%, was attributed to dehydration. Four types of pellets were produced, namely pellets A, B, C and D. Pellet A was tested with platinum–carbon paper electrode, and pellets B, C and D were tested with gold electrodes. Both pellets A and B were studied from 113 °C to 317 °C for 135 h. Pellet C was first investigated from room temperature to 176 °C for 360 h. After cooling down to room temperature, a second measurement with pellet C was carried out under the same conditions as used for pellets A and B. Pellet D, on the other hand, was heated up to 450 °C, kept at that temperature for 2 h and then cooled down to room temperature prior to the conductivity measurements. It was observed that the conductivities of pellets A and B decreased to values of 5.2 × 10?8 S cm?1 and 6.6 × 10?7 S cm?1 at 317 °C, respectively, and an unexpected rise in the conductivity (9.89 × 10?6 S cm?1 at 317 °C) was seen with pellet C. Dehydration of RbH(PO3H)·Te(OH)6 might be responsible for this unexpected rise in the conductivity of pellet C. The monoprotic part RbH(PO3H) of RbH(PO3H)·Te(OH)6 apparently became diprotic (Rb2H2P2O5) part of Rb2H2P2O5·[Te(OH)6]2 after dehydration. The measured conductivity of pellet D, which was dehydrated prior to the measurement, reached a value of 5.41 × 10?5 S cm?1 at 317 °C and showed a good stability over-each-run time and temperatures measurement up to 317 °C. The dehydrated compound, Rb2H2P2O5·[Te(OH)6]2, has also a higher hydrogen density relative to the starting compound, RbH(PO3H)·Te(OH)6. It is deduced that completion of the dehydration can be responsible for the unexpected rise in the conductivity of RbH(PO3H)·Te(OH)6. This unusual case is important for studies in solid acid proton conductors.  相似文献   

19.
A facile method to prepare nanoscaled BaFe0.5Nb0.5O3 via synthesis in boiling NaOH solution is described herein. The nano-crystalline powder has a high specific surface area of 55 m2 g−1 and a crystallite size of 15 nm. The as-prepared powder does not show any significant crystallite growth up to 700 °C. The activation energy of the crystallite growth process was calculated as 590 kJ mol−1. Dense ceramics can be obtained either after sintering at 1200 °C for 1 h or after two-step sintering at 1000 °C for 10 h. The average grain sizes of ceramic bodies can be tuned between 0.23 μm and 12 μm. The thermal expansion coefficient was determined as 11.4(3)·10−6 K−1. The optical band gap varies between 2.90(5) and 2.63(3) eV. Magnetic measurements gave a Néel temperature of 20 K. Depending on the sintering regime, the ceramic samples reach permittivity values between 2800 and 137,000 at RT and 1 kHz.  相似文献   

20.
In the present paper the microstructure and domain structure in modified BaTiO3 with Pb and Ca as additives have been investigated using SEM technique. The (Ba,Pb)TiO3 and (Ba,Ca,Pb)TiO3 ceramics show a slight difference in grain size, being smaller in composites with Ca additives which acts as grain growth inhibitor. The domain configuration is almost the same. The small grain microstructure with tiny domains have been observed in specimen sintered at 1300°C and the average grain size is in the range 1–3 μm. For those specimens sintered at 1320°C the homogenous microstructure is also obtained with grain size around 2–4 μm. For both types of specimens, the single domain structure is associated with grain which size is lower than 2 μm. The banded domain structure could be observed in grains with size bigger than 3 μm. The bar shape grains and elongated grains together with some large region in microstructure are free of domain structure. The observed domain patterns reveal mainly the straight domain boundary lines with 90° domains walls. The wall thickness ranged from 0·03 μm to 0·15 μm, while the domain width is in the range of 0·1 μm–1 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号