共查询到20条相似文献,搜索用时 15 毫秒
1.
采用溶胶-凝胶法,以钛酸四丁酯和正硅酸乙酯为前驱体,利用乙酰丙酮和二乙醇胺为络合剂,制备多孔TiO2/SiO2复合薄膜。通过扫描电子显微镜(SEM)、原子力显微镜(AFM)、傅里叶变换红外光谱(FTIR)、X射线衍射分析(XRD)、接触角测试仪(WCA)等对薄膜的结构和性能进行了表征。结果表明,TiO2/SiO2复合薄膜表面相对孤立或连通的孔结构是由缩聚反应诱导的相分离以及溶胶-凝胶转化过程同步作用产生的。多孔复合薄膜具有优异的超亲水性能,自然条件下与水接触角仅为2.5°,而普通致密TiO2薄膜在相同条件下接触角为19.3°。复合薄膜的超亲水性是由多孔结构和SiO2复合的共同作用产生,受到表面微观形貌和表面化学组成(羟基含量)的共同影响。 相似文献
2.
Jun-Bin Ko Sung Wook Lee Dong Eun Kim Young Un Kim Gang Li Seung Goo Lee Tae-Sun Chang Dojin Kim Yong Lak Joo 《Journal of Porous Materials》2006,13(3-4):325-330
(1 ? x)SiO2-(x)ZrO2 (x = 0.1, 0.2) composite fiber mats were prepared by electrospinning their sol-gel precursors of zirconium acetate and tetraethyl orthosilicate (TEOS) without using a polymer binder. The electrospun composite fibers were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FT-IR) and mercury porosimetry. The composite fibers having a tetragonal crystalline ZrO2 were obtained by calcining the electrospun composite fibers at high temperatures. The results show that the structure and crystallization of ZrO2 in the composite fibers can be controlled by sintering temperature, while the porosity and morphology of the fiber mats did not depend on the sintering temperature. 相似文献
3.
4.
5.
以钛酸四丁酯[Ti(OBu)4]为钛源,采用溶胶-凝胶法将TiO2前驱体负载于稻壳表面,进一步以该复合物为原料,经炭化和KOH化学活化制得具有可见光激发活性的活性炭负载TiO2/SiO2光催化剂。以对亚甲基蓝的脱色率为依据探讨了钛酸四丁酯的用量及煅烧温度对催化剂光催化性能的影响。利用傅立叶变换红外光谱、扫描电镜及X射线衍射等测试手段对光催化剂的结构、表面形态及晶相结构进行了表征。结果表明,TiO2晶型为锐钛矿相结构,并且与SiO2作用形成了Ti—O—Si键。 相似文献
6.
《Ceramics International》2017,43(8):6377-6384
In this work, biological ceramic-wood porous ZrC/C materials were prepared in a KCl-KF molten salt reaction medium, using Zr as a metal source and a C template as C source. The effects of reaction temperature and salts/Zr mole ratio on the formation of porous biomorphic ZrC/C ceramics were investigated. The phase compositions and morphological structures of the C templates and porous ZrC/C ceramics were characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, and pore size analysis. The results showed that the ZrC grains were equiaxed and enhanced the oxidation resistance of the material. Furthermore, a possible reaction mechanism for the formation of porous biomorphic ZrC/C ceramics in molten salt is proposed. 相似文献
7.
8.
二氧化硅(SiO2)作为锂离子电池负极材料具有理论容量高、放电电位低、成本较低等特点,但存在导电性差、充放电过程体积膨胀严重以及容量衰减过快等问题。以石油沥青为碳源,利用硅烷偶联剂KH-540对纳米α-Fe2O3模板剂进行表面化学包覆,然后将硅源修饰模板剂与碳源混合,经碳化、酸洗等步骤得到高分散SiO2/石油沥青基多孔碳(SiO2/PC)。所得SiO2/PC作为锂离子电池负极材料,在1 A·g-1电流密度下,循环900圈后仍具有640 mA·h·g-1的高可逆比容量。研究结果表明,高度纳米化的SiO2在高温碳化过程原位生成,紧密牢固地负载于多孔碳表面,提高了其导电性,同时能够有效缓解SiO2在充放电过程中的体积膨胀,抑制SiO2的团聚或粉化,从而表现出优异的电化学性能。 相似文献
9.
《Ceramics International》2022,48(17):24319-24325
Joining is an indispensable process for expanding the application of ceramics and composites. Recently, glasses have been extensively explored for ceramic/composite joining owing to their unique functional needs. However, the difficulty in detecting amorphous materials and lack of enthalpy data make the interfacial reaction mechanism challenging to investigate. In this study, the interfacial reaction mechanism of joints of SiO2f/SiO2 composite-brazed bismuth glass was thoroughly explored. SiO2 was dissolved from the matrix and used throughout the brazing process. In the initial stage, silica reacts with the brazing glass to form Bi4(SiO4)3. Then, owing to the decomposition of Bi4(SiO4)3, the silicate glass replaced the bismuth glass. Finally, some precipitation of SiO2 occurred at the brazing seam owing to an entropy–enthalpy dominating mode. This study may instigate the design of brazing glasses for joining SiO2f/SiO2 composites. 相似文献
10.
《Applied catalysis》1990,57(1):241-251
The effect of silver on carbon monoxide hydrogenation over Rh/SiO2 has been studied. Silver is found to decrease the rates of formation for methane and C2+ hydrocarbons more than those for C2 oxygenates resulting in a marked increase in C2 oxygenate selectivity. Infrared spectroscopic studies reveal that Ag blocks the bridge-CO sites. Ethylene addition studies show that Ag promotes carbon monoxide insertion and suppresses hydrogenation. The results suggest that the number of Rh atoms required for carbon monoxide insertion may be less than that for hydrogenation and methanation. 相似文献
11.
《Ceramics International》2022,48(9):12450-12459
Recently, fabricating one-dimensional (1D) nanomaterials on C/C composite has been recognized effective to improve the thermal shock resistance of the coated composites. However, the remaining metal catalyst in CVD process and the week bond of 1D nanomaterials with substrate limit the strengthening effect. Herein, laser chemical vapor deposition (LCVD) was proposed for fabricating porous SiC nanostructured coating on C/C composite without metal catalyst. The laser heating resulted in a temperature gradient between the top and bottom of the coating, providing an external driving force for the vertical growth of whiskers with side-branches, forming a porous network nanostructure. The porous nanostructure was beneficial to reduce CTE and effectively relieve thermal stress. After 10 times of thermal shock test from RT to 1723 K, the porous SiC nanostructured coating remained intact. This work provides a novel methodology to produce functional coating on C/C composite with outstanding thermal shock resistance. 相似文献
12.
Based on plasma-treated single wall carbon nanotubes (SWCNTs), SWCNT/SiO2 and thiol groups-functionalized SWCNT/SiO2 hybrids have been fabricated through a sol–gel process. By means of thiol groups, Ag nanoparticles have been in situ synthesized
and bonded onto the SiO2 shell of SWCNT/SiO2 in the absence of external reducing agent, resulting in the stable carbon nanotube/SiO2/Ag nanoparticles hybrids. This strategy provides a facile, low–cost, and green methodology for the creation of carbon nanotube/inorganic
oxides-metal nanoparticles hybrids. 相似文献
13.
《应用陶瓷进展》2013,112(1):29-34
AbstractA kinetic study on a non-conventional route for the production of silicon carbide was carried out on a laboratory scale. Silicon carbide was produced by vacuum pyrolysis of rice husks in the temperature range 1200–1600°C. The resulting products were characterised by XRD and chemical analysis. Attempts were made to develop the parametric relationships correlating the yield of silicon carbide to the process variables and starting material characteristics. Empirical relationships defining the rate of silicon carbide formation as a function of temperature, compaction pressure, CO gas diffusion, and compact porosity are proposed. 相似文献
14.
对废纸纤维素进行处理,以甲基三甲氧基硅烷(MTMS)作为硅源,制备纤维素/SiO2复合水凝胶,经过冷冻干燥得到性能良好的纤维素/SiO2复合气凝胶。利用扫描电镜(SEM)、接触角测量仪及热重分析(TGA)等对制得的气凝胶进行了表征测试。结果显示材料由大孔、介孔、微孔组成,最低密度为0.107 g/cm3,具有较好的疏水性能,静态疏水接触角可达148.5°,力学性能良好,可实现50%范围内压缩后100%恢复,材料具备良好的吸附性能,吸附油污可达到本身质量的12.7倍,热稳定性提高。在处理有机废水,尤其是水体油污方面有着广阔的应用前景。 相似文献
15.
以无水乙醇为溶剂,使用偶联剂γ-(甲基丙烯酰氧)丙基三甲氧基硅烷(KH-570)对纳米SiO2表面进行了化学改性,采用溶液聚合法在改性后的纳米粒子表面接枝苯乙烯,然后通过熔融共混法制备了纳米SiO2/PS复合材料。利用红外光谱考察了改性前后纳米SiO2与硅烷偶联剂、苯乙烯的相互作用;利用扫描电镜观察了复合材料的断面形貌结构,研究了纳米SiO2含量对复合材料力学性能的影响。结果表明:与纯聚苯乙烯相比,纳米SiO2质量分数为4%时,复合材料的缺口冲击强度提高了7.6%、拉伸强度提高了0.98%,显示出纳米SiO2对聚苯乙烯具有同时增强增韧的效果。 相似文献
16.
17.
In this study, rice husk-derived ash (RHA) was hydrated with CaO and then impregnated with copper to synthesize a sorbent that was subsequently tested for its capacity in simultaneous removal of SO2 and NO from a simulated flue gas. The effect of various sorbent preparation parameters, including copper loading, RHA/CaO ratio, hydration period and NaOH concentration, on the desulphurisation/denitrification capacity of the sorbents was studied using Design-Expert Version 6.0.6 software. Specifically, central composite design (CCD) coupled with response surface method (RSM) was used. The individual parameters that were found to significantly affect the sorbent capacity were RHA/CaO ratio and NaOH concentration. In addition, the interactive effect between RHA/CaO ratio, hydration period and NaOH concentration was also found to have a significant effect on the sorbent activity. The preparation condition for optimal sorbent activity was found to be CuO loading of 3.0%, RHA/CaO ratio of 1.4, hydration period of 20.0 h and NaOH concentration of 0.2 M. Characterisation of the sorbent was performed using scanning electron microscopy (SEM), X-ray diffraction (XRD) and nitrogen adsorption-desorption method to describe the effect of the sorbent preparation parameters on its desulphurisation/denitrification activity. 相似文献
18.
合成了一种新型的二氧化硅/二氧化锆(SiO2/ZrO2)核壳型复合材料。利用异丙醇锆的水解缩合在SiO2微球表面沉积ZrO2层,得到二氧化锆包覆的SiO2/ZrO2核壳型复合氧化物。采用SEM、EDX、XRD等对复合材料的形貌及性质进行表征。利用IR-1红外发射率测量仪测定复合粒子在8~14μm波段的红外发射率。结果显示:该复合物具有明显的核壳结构。随着沉积次数的增加,ZrO2在SiO2表面的含量增加。ZrO2层经高温热处理可分别形成四方和单斜两种晶型。ZrO2层沉积在SiO2表面后,得到的SiO2/ZrO2核壳复合粒子的红外发射率较基底SiO2的有所降低。ZrO2的晶型也影响着复合材料的红外发射性能。ZrO2层为单斜晶的SiO2/ZrO2核壳复合物在8~14μm波段的红外发射率值比ZrO2层为四方晶时的更小。ZrO2层和SiO2球之间的界面作用解释了该复合材料红外发射率降低的原因。 相似文献
19.
《Ceramics International》2020,46(13):20871-20877
Cost-effective electrodes with high activity for hydrogen evolution reaction (HER) and durability are required to develop clean and renewable hydrogen energy. In this work, a porous Cu supported Ni-P/CeO2 composite coating was fabricated by a facile electrodeposition technique. Owing to the contribution from the 3D porous Cu support and the incorporating agglomeration-free and uniformly distributed CeO2 particles into the Ni-P matrix, the optimal composite coating (porous Cu supported Ni-P/CeO2 (20 g L-1)) exhibits outstanding electrocatalytic performance with small overpotentials (η) of 118 and 320 mV at a cathodic current density of 10 and 100 mA cm2. Moreover, the composite electrode also presents excellent electrochemical stability in the alkaline solution. This work provides a feasible option to fabricate composite electrodes that may have desirable electrochemical properties for HER. 相似文献
20.
Hongyan Wu Mingxia Gao Dan Zhu Shengcai Zhang Yi Pan Hongge Pan Yongfeng Liu Filipe J. Oliveira Joaquim M. Vieira 《Ceramics International》2012,38(5):3519-3527
SiC whisker reinfored carbide-based composites were fabricated by a reactive infiltration method by using Si as the infiltrate. Rice husks (RHs) were pyrolyzed to SiC whiskers, particles and amorphous carbon, and were then mixed with different contents of B4C as well as Mo powders. The mixtures were molded to porous preforms for the infiltration. The SiC whiskers and particles in the preform remained in the composite. Molten Si reacted with the amorphous carbon, B4C as well as Mo in the preform during the infiltration, forming newly SiC, B12(C,Si,B)3 as well as MoSi2. The upper values of elastic modulus, hardness and fracture toughness of the composites are 297.8 GPa, 16.8 ± 0.8 GPa, and 3.8 ± 0.2 MPa m1/2, respectively. The influence of the phase composition of the composites on the mechanical properties and the fracture mechanism are discussed. 相似文献