首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a novel control approach is presented to improve the stability and transparency of the nonlinear bilateral teleoperation system with time delays, where a four-channel (4-CH) architecture using modified wave reflection reduction transformation is explored in order to guarantee the passivity of the communication channels in the nonlinear bilateral teleoperation system; a sliding-mode controller is proposed to compensate for the dynamic uncertainties and enhance the system synchronization performance in finite time. The system stability has been analyzed using Lyapunov functions. The proposed method is validated through experimental work based on a 3-DOF bilateral teleoperation platform in the presence of time delays. The experimental results clearly demonstrate that the proposed control algorithm has superiority on system transparency over other wave-based systems.  相似文献   

2.
针对通信时延对遥操作系统稳定性和透明性的影响,研究了一种基于双边自适应控制和波变量理论的控制方法。通过设计波控制器保证通信传输模块的无源性,在保证系统稳定的基础上,调节波阻抗系数来提高系统的透明性,并在时延10 s的情况下进行主从端速度、位置和力的跟踪仿真实验,结果表明该方法和已有的双边自适应方法相比既能保证系统稳定且透明性好,达到较好的控制效果。  相似文献   

3.
通信时延是遥操作系统中固有的问题,它会严重影响遥操作的性能,降低系统的稳定性和跟踪性。基于无源理论的波变量法可以保证遥操作系统在任意时延下稳定,是解决时延问题的一个重要方法。然而,波变量法带来的波反射会阻扰有用信号的传输,降低了主从端信号的跟踪性,严重时甚至会导致整个系统振荡。针对这一问题,提出了一种基于波变量补偿的阻抗匹配双边遥操作系统结构,旨在减少波反射,提高操作者的临场感和系统的跟踪性。通过仿真实验,结果表明所提方法能够保证固定时延条件下遥操作系统的稳定性,并具有较好的跟踪性。  相似文献   

4.
In this paper, a new bilateral control algorithm based on absolute stability theory is put forward, which aims at the time-delay teleoperation system with force feedback from the slave directly. In the new control algorithm, the delay-dependent stability, instead of delay-independent stability, is taken as the aim of control design. It improves the transparency of the system at the price of unnecessary stability. With this algorithm, the time-delay teleoperation systems have good transparency and stability. A simulation system is established to verify the effect of this algorithm.  相似文献   

5.
时延遥操作系统控制的波变量法   总被引:1,自引:1,他引:1  
时延稳定性是遥操作系统面临的难题之一.基于无源性理论的波变量法可以保证遥操作系统在任意时延下稳定,已成为遥操作控制系统设计的一个重要方法.本文对波变量法的理论基础、波变量与波控制器、实际使用中的注意事项以及波变量法的最新进展做了系统的、全面的阐述,并指出其未来的研究方向.  相似文献   

6.
随着六足机器人研究工作的深入,针对其遥操作系统的开发面临诸多挑战.为了弥补松软接触条件对系统可控性及稳定性的影响,提出一种基于时域无源性控制(time-domain passivity control,TDPC)的六足机器人双边触觉遥操作方法.其主从两端采取位置-速度的交互模式,通过分析足-地柔性接触的作用机理,构建无源观测器和无源控制律以补偿足底滑移所导致环境系统的潜在有源性,采用速度跟踪模式设计基于触觉力反馈的系统控制架构,并利用Llewellyn准则确定控制律参数的稳定范围.最后,搭建半物理仿真实验平台并验证所提出的双边触觉遥操作方法在松软地形条件下能够保证六足机器人遥操作系统的稳定,且兼具较好的持续跟踪能力.  相似文献   

7.
In this paper, adaptive NN control is proposed for bilateral teleoperation system with dynamic uncertainties, unknown external disturbances, and unsymmetrical stochastic delays in communication channel to achieve transparency and robust stability. Compared with previous passivity‐based teleoperation framework, the communication delays are unsymmetrical and stochastic. By partial feedback linearization using nominal dynamics, the nonlinear dynamics of the teleoperation system are transformed into two subsystems: local master/slave dynamics control and time‐delay motion tracking. By integrating Markov jump systems and adaptive parameters updating, adaptive NN control strategy is developed. The stability of the closed‐loop system and the boundedness of tracking errors are proved using Lyapunov–Krasovskii functional synthesis under specific linear matrix inequalities conditions. The proposed adaptive NN control is robust against motion disturbances, parametric uncertainties, and unsymmetrical stochastic delay, which effectiveness is validated by extensive simulation studies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents a design of a teleoperation system using time forward observer-based adaptive controller. The controller is robust to the time-variant delays and the environmental uncertainties while assuring the stability and the transparent performance. A novel theoretical framework and algorithms for this teleoperation system have been built up with neural network-based multiple model control and time forward state observer. Conditions for stability and transparency performance are also investigated.  相似文献   

9.

This paper presents two adaptive neural-fuzzy controllers equipped with compensatory fuzzy control in order to adjust membership functions, and as well to optimize the adaptive reasoning by using a compensatory learning algorithm. To the first controller is applied compensatory neural-fuzzy inference (CNFI) and to the second compensatory adaptive neural fuzzy inference system (CANFIS). Each controller is incorporated into a two channel bilateral teleoperation architecture involving force-position scheme, which combines the position control of the slave system with force reflection on the master. An analysis of stability and transparency based on a passivity framework is carried out. The resulting controllers are implemented on a one degree of freedom teleoperation system actuated by DC motors. The experimental results obtained show a fairly high accuracy in terms of position and force tracking, under free space motion and hard contact motion, what highlights the effectiveness of the proposed controllers.

  相似文献   

10.
Stability of a bilateral teleoperation system may be jeopardized by controller discretization, which has been shown to involve energy leaks. This paper proposes a novel approach to analyzing the absolute stability of sampled-data bilateral teleoperation systems consisting of discrete-time controllers and continuous-time master, slave, operator, and environment. The proposed stability analysis permits scaling and delay in the master and the slave positions and forces. The absolute stability conditions reported here impose bounds on the gains of the discrete-time controller, the damping terms of the master and the slave, and the sampling time. A design-related application of these results is in proper selection of various control parameters and the sampling rate for stable teleoperation under discrete-time control. To explore the trade-off between the control gains and the sampling time, it is studied that how large sampling times, which require low control gains for maintaining stability, can lead to unacceptable teleoperation transparency and human task performance in a teleoperated switching task. This shows that the effect of sampling time must be taken into account because neglecting it (as in the absolute stability literature) undermines both stability and transparency of teleoperation. The resulting absolute stability condition has been verified via experiments with two Phantom Omni robots.  相似文献   

11.
In this paper, a new adaptive controller is proposed to ensure the stability and good performance of a teleoperation system while a wide range of time delays is considered. For this means, a feedforward compensator is designed to ensure system passivity and then a new model reference adaptive controller (MRAC) is developed to provide good performance. The developed system demonstrates good stability and force tracking capabilities. A command generator tracker (CGT) is designed for a sample teleoperation system and the results are compared with the proposed system.  相似文献   

12.
The problem of controlling a tandem of robotic manipulators composing a teleoperation system with force reflection is addressed in this paper. The final objective of this paper is twofold: 1) to design a robust control law capable of ensuring closed-loop stability for robots with uncertainties and 2) to use the so-obtained control law to improve the tracking of each robot to its corresponding reference model in comparison with previously existing controllers when the slave is interacting with the obstacle. In this way, a multiestimation-based adaptive controller is proposed. Thus, the master robot is able to follow more accurately the constrained motion defined by the slave when interacting with an obstacle than when a single-estimation-based controller is used, improving the transparency property of the teleoperation scheme. The closed-loop stability is guaranteed if a minimum residence time, which might be updated online when unknown, between different controller parameterizations is respected. Furthermore, the analysis of the teleoperation and stability capabilities of the overall scheme is carried out. Finally, some simulation examples showing the working of the multiestimation scheme complete this paper.  相似文献   

13.
The problem of controlling a tandem of robotic manipulators composing a teleoperation system with force reflection is addressed in this paper. The final objective of this paper is twofold: 1) to design a robust control law capable of ensuring closed-loop stability for robots with uncertainties and 2) to use the so-obtained control law to improve the tracking of each robot to its corresponding reference model in comparison with previously existing controllers when the slave is interacting with the obstacle. In this way, a multiestimation-based adaptive controller is proposed. Thus, the master robot is able to follow more accurately the constrained motion defined by the slave when interacting with an obstacle than when a single-estimation-based controller is used, improving the transparency property of the teleoperation scheme. The closed-loop stability is guaranteed if a minimum residence time, which might be updated online when unknown, between different controller parameterizations is respected. Furthermore, the analysis of the teleoperation and stability capabilities of the overall scheme is carried out. Finally, some simulation examples showing the working of the multiestimation scheme complete this paper.  相似文献   

14.
In this paper, a robust output feedback control strategy is proposed for a nonlinear teleoperation system which can deal with stability as well as transparency despite the variable time‐delay and uncertain dynamics. The proposed approach is composed of two steps. First, local Lyapunov based adaptive controllers are applied to both master and slave sides in order to suppress the nonlinearities in the system dynamics. Afterwards, a new observer‐based controller scheme is proposed to achieve stability and performance (transparency) of the teleoperation system. Using the Lyapunov techniques, stability and performance objectives are cast as some linear matrix inequality (LMI) feasibility conditions. To evaluate the performance of the proposed controller, a set of simulations and experiments are performed. Through simulation results, it is demonstrated that the proposed approach significantly outperforms the existing methodologies reported in the literature.  相似文献   

15.
With the widespread use of multi-legged robots in various applications, new challenges have arisen in terms of designing their control systems, one of which is posed by the multiple degrees of freedom of the robotic legs. This paper proposes a novel method for the bilateral teleoperation control of a hexapod robot by using a semi-autonomous strategy. In this teleoperation system, the body velocities of the slave robot and the displacements of the master robot are mapped to each other. The angular velocities of the joints of the legs rely on independent planning to achieve a horizontal movement. A controller is designed based on the difference between the expected velocity and the actual velocity of the body, and the difference is fed back to the operator in the form of haptic force. Therefore, the transparency of the control system is guaranteed by increasing the damping compensation both in the master and slave robots. In addition, the stability of the bilateral teleoperation control system of the hexapod robot is guaranteed by passivity theory, and the proposed method is verified by conducting semi-physical simulation experiments.  相似文献   

16.
The extension of parallel force/position control to teleoperation systems is considered in this article. In the proposed four‐channel bilateral controller, higher priority is granted to position control at the master side and to force control at the slave side. The primary goal of this control architecture is the enhancement of force and position tracking performance in the presence of uncertainties in the system and environment. The stability and performance of the proposed controller is investigated by analyzing the three decoupled single‐degree‐of‐freedom systems obtained from decoupling and projecting the closed‐loop system dynamics onto the slave task‐space orthogonal directions. Experimental results demonstrate significant improvement in transparency. © 2002 Wiley Periodicals, Inc.  相似文献   

17.
In this paper, a simple structure design with arbitrary motion/force scaling to control teleoperation systems, with model mismatches is presented. The goal of this paper is to achieve transparency in presence of uncertainties. The master–slave systems are approximated by linear dynamic models with perturbed parameters, which is called the model mismatch. Moreover, the time delay in communication channel with uncertainties is considered. The stability analysis will be considered for two cases: (1) stability under time delay uncertainties and (2) stability under model mismatches. For the first case, two local controllers are designed. The first controller is responsible for tracking the master commands, while the second controller is in charge of force tracking as well as guaranteeing stability of the overall closed-loop system. In the second case, an additional term will be added to the control law to provide robustness to the closed-loop system. Moreover, in this case, the local slave controller guarantees the position tracking and the local master controller guarantees stability of the inner closed-loop system. The advantages of the proposed method are two folds: (1) robust stability of the system against model mismatches is guaranteed and (2) structured system uncertainties are well compensated by applying independent controllers to the master and the slave sites. Simulation results show good performance of the proposed method in motion tracking as well force tracking in presence of model mismatches and time delay uncertainties.  相似文献   

18.
大时延力反馈双边控制系统   总被引:3,自引:0,他引:3  
邓启文  韦庆  李泽湘 《机器人》2005,27(5):410-413
阐述了力反馈双边控制遥操作的基本思想,讨论了其稳定性和透明性,介绍了一种既能保证稳定性、又能提高透明性的力反馈双边控制方法.最后给出了力反馈遥操作实验系统的实现,在6s时延条件下成功完成了曲面跟踪任务.  相似文献   

19.
Bilateral teleoperation technology has caused wide attentions due to its applications in various remote operation systems. The communication delay becomes one of the main challenging issues in the teleoperation control design. Meanwhile, various nonlinearities, parameter variations, and modeling uncertainties existing in manipulator and environment dynamics need to be considered carefully in order to achieve good control performance. In this paper, a globally stable nonlinear adaptive robust control algorithm is developed for bilateral teleoperation systems to deal with these control issues. Namely, the unknown dynamical parameters of the environmental force are estimated online by the improved least square adaptation law. A novel communication structure is proposed where only the master position signal is transmitted to the slave side for the tracking design, and the online estimators of the environmental parameters are transmitted from the slave to the master to replace the traditional environmental force measurement. Because the estimated environmental parameters are not power signals, the passivity problem of the communication channel and the trade‐off limitation between the transparency performance and robust stability in traditional teleoperation control are essentially avoided. The nonlinear adaptive robust control is subsequently developed to deal with nonlinearities, unknown parameters, and modeling uncertainties of the master, slave, and environmental dynamics, so that the guaranteed transient and steady‐state transparency performance can be achieved. The experiments on two voice‐coil motor‐driven manipulators are carried out, and the comparative results verify that the proposed control algorithm achieves the excellent control performance and the guaranteed robust stability simultaneously under time delays. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
通常遥操作系统主、从机械手间存在通信时延,影响了系统的稳定性和操作性能.在基于Internet的遥操作系统中,时延是时变的,对系统的影响尤为剧烈.为了解决这个问题,在环境模型未知的条件下,首先提出在本地控制端用主手状态、预测的从手状态及接触力设计反馈控制器;接着用时间前向观测器预测从机械手的状态,并将时延变化率建模为系统不确定参数,最终得到稳定性和透明性条件.仿真结果表明了该方法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号