首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Silicon nitride (Si3N4) ceramics were fabricated by gas pressure sintering (GPS) using four sintering additives: Y2O3–MgO, Y2O3–MgF2, YF3–MgO, and YF3–MgF2. The phase composition, grain growth kinetics, mechanical properties, and thermal conductivities of the Si3N4 ceramics were compared. The results indicated that the reduction of YF3 on SiO2, induced a high Y2O3/SiO2 secondary phase ratio, which improved the thermal conductivity of the Si3N4 ceramics. The depolymerization of F atom reduces the diffusion energy barrier of solute atom and weakens the viscous resistance of anion group, which was beneficial to grain boundary migration. Besides exhibiting a lower grain growth exponent(n = 2.5)and growth activation energy (Q = 587.94 ± 15.35 kJ/mol), samples doped with binary fluorides showed excellent properties, including appreciable thermal conductivity (69 W m−1 K−1), hardness (14.63 ± 0.12 GPa), and fracture toughness (8.75 ± 0.18 MPa m1/2), as well as desirable bending strength (751 ± 14 MPa).  相似文献   

2.
Si3N4 ceramics were prepared by hot pressing (HP) and spark plasma sintering (SPS) methods using low content (5 mol%) Al2O3–RE2O3(RE = Y, Yb, and La)–SiO2/TiN as sintering additives/secondary additives. The effects of sintering additives and sintering methods on the composition, microstructures, and mechanical properties (hardness and fracture toughness) were investigated. The results show that fully density Si3N4 ceramics could be fabricated by rational tailoring of sintering additives and sintering method, and TiN secondary additive could promote the density during HP and SPS. Besides, SN-AYS-SPS possesses the most competitive mechanical properties among all the as-prepared ceramics with the Vickers hardness as 17.31 ± .43 GPa and fracture toughness as 11.07 ± .48 MPa m1/2.  相似文献   

3.
High-purity silicon powder is used as the starting material for cost-effective preparation of silicon nitride ceramics with both high thermal conductivity and excellent mechanical properties using RE2O3 (RE=Y, La or Er) and MgO as sintering additives. Nitridation is a key procedure that would affect the properties of green bodies and the sintered samples. The β: (α+β) ratio can be increased as the samples nitrided at 1450ºC and a large amount of long rod-like β-Si3N4 grains were developed in the samples. It was found that the addition of Er2O3-MgO could help to improve the mechanical properties of the sintered Si3N4 ceramics, the thermal conductivity, flexural strength and fracture toughness of the sample were 90 W/(m∙K), 953±28.3 MPa and 10.64±0.61 MPa·m1/2, respectively. The RE3+ species with larger ionic radius tended to increase the oxygen of nitrided samples and decrease N/O ratio (triangle grain boundary) of sintered samples.  相似文献   

4.
《Ceramics International》2016,42(14):15679-15686
Si3N4 ceramic was densified by hot pressing sintering at 1750 °C for 1 h under the uniaxial pressure of 20 MPa in N2 atmosphere with YF3 and MgO as sintering additives. The thermal conductivities of SN-YF specimen were both higher than that of Si3N4 ceramic sintered with Y2O3 and MgO before and after annealing treatment. The grain size and aspect ratio in SN-YF specimen were both bigger than those in the SN-YO specimen, which was beneficial for the creation of high thermal conductive path. On the other hand, the improvement of thermal conductivity by the addition of YF3 might be attributed to the reduction of the grain boundary phase due to the evaporation of SiF4, and the resultant reduction of the lattice oxygen due to the reduction of SiO2 in the grain boundary phase. The {0001} direction of grains had the probability of growing along the hot pressing direction in the SN-YF specimen, which was beneficial for the improvement of thermal conductivity while the {0001} direction grew along the X0-Y0 plane in the SN-YO specimen. The mechanical properties of SN-YF specimen were comparable to those of SN-YO specimen.  相似文献   

5.
《Ceramics International》2021,47(23):33353-33362
High thermal conductivity Si3N4 ceramics were fabricated using a one-step method consisting of reaction-bonded Si3N4 (RBSN) and post-sintering. The influence of Si content on nitridation rate, β/(α+β) phase rate, thermal conductivity and mechanical properties was investigated in this work. It is of special interest to note that the thermal conductivity showed a tendency to increase first and then decrease with increasing Si content. This experimental result shows that the optimal thermal conductivity and fracture toughness were obtained to be 66 W (m K)-1 and 12.0 MPa m1/2, respectively. As a comparison, the nitridation rate and β/(α+β) phase rate in a static pressure nitriding system, i.e., 97% (MS10), 97% (MS15), 97% (MS20) and 8.3% (MS10), 8.3% (MS15), 8.9% (MS20), respectively, have obvious advantages over those in a flowing nitriding system, i.e., 91% (MS10), 91% (MS15), 93% (MS20) and 3.1% (MS10), 3.3% (MS15), 3.3% (MS20), respectively. Moreover, high lattice integrity of the β-Si3N4 phase was observed, which can effectively confine O atoms into the β-Si3N4 lattice using MgO as a sintering additive. This result indicates that one-step sintering can provide a new route to prepare Si3N4 ceramics with a good combination of thermal conductivity and mechanical properties.  相似文献   

6.
Si3N4 ceramics were prepared by gas pressure sintering at 1900°C for 12 h under a nitrogen pressure of 1 MPa using Gd2O3 and MgSiN2 as sintering additives. The effects of the Gd2O3/MgSiN2 ratio on the densification, microstructure, mechanical properties, and thermal conductivity of Si3N4 ceramics were systematically investigated. It was found that a low Gd2O3/MgSiN2 ratio facilitated the thermal diffusivity of Si3N4 ceramics while a high Gd2O3/MgSiN2 ratio benefited the densification and mechanical properties. When the Gd2O3/MgSiN2 ratio was 1:1, Si3N4 ceramics obtained an obvious exaggerated bimodal microstructure and the optimal properties. The thermal conductivity, flexural strength, and fracture toughness were 124 W·m−1·k−1, 648 MPa, and 9.12 MPa·m1/2, respectively. Comparing with the results in the literature, it was shown that Gd2O3-MgSiN2 was an effective additives system for obtaining Si3N4 ceramics with high thermal conductivity and superior mechanical properties.  相似文献   

7.
Porous silicon nitride ceramics were prepared via sintered reaction bonded silicon nitride at 1680 °C. The grain size of nitrided Si3N4 and diameter of post-sintered β-Si3N4 are controlled by size of raw Si. Porosity of 42.14–46.54% and flexural strength from 141 MPa to 165 MPa were obtained. During post-sintering with nano Y2O3 as sintering additive, nano Y2O3 can promote the formation of small β-Si3N4 nuclei, but the large amount of β-Si3N4 (>20%) after nitridation also works as nuclei site for precipitation, in consequence the growth of fine β-Si3N4 grains is restrained, the length is shortened, and the improvement on flexural strength is minimized. The effect of nano SiC on the refinement of the β-Si3N4 grains is notable because of the pinning effect, while the effect of nano C on the refinement of the β-Si3N4 grains is not remarkable due to the carbothermal reaction and increase in viscosity of the liquid phase.  相似文献   

8.
Phase composition, microstructures, and mechanical properties of silicon nitride (Si3N4) ceramics were investigated with ZrB2 and B additives. Results showed that the addition of ZrB2 and/or B in 2.5 and 5 vol.% promoted the phase transformation of α- to β-Si3N4 phase and the formation of bimodal microstructure after hot-pressing at 1500 °C. With the introduction of 2.5 vol.% (ZrB2-B) binary additives, fracture toughness and strength of Si3N4 ceramics increased significantly from 5.2 MPa m1/2 and 384 MPa to 7.2 MPa m1/2 and 675 MPa, respectively. However, the hardness of ceramics decreased slightly from 23.5 GPa to 21.3 GPa, which was still higher than typical values reported on Si3N4 ceramics (15˜17 GPa).  相似文献   

9.
《Ceramics International》2019,45(10):13308-13314
The Si3N4 coating and Si3N4 coating with Si3N4 whiskers as reinforcement (Si3N4w-Si3N4) were prepared by chemical vapor deposition (CVD) on two-dimensional silicon nitride fiber reinforced silicon nitride ceramic matrix composites (2D Si3N4f/Si3N4 composites). The effects of process parameters of as-prepared coating including the preparation temperature and volume fraction of Si3N4w on the microstructure and mechanical properties of the composites were investigated. Compared with Si3N4 coating, Si3N4w-Si3N4 coating shows more significant effect on the strength and toughness of the composites, and both strengthening and toughening mechanism were analyzed.  相似文献   

10.
Porous silicon nitride (Si3N4) ceramics were fabricated by self-propagating high temperature synthesis (SHS) using Si, Si3N4 and sintering additive as raw materials. Effects of different types of sintering additives with varied ionic radius (La2O3, Sm2O3, Y2O3, and Lu2O3) on the phase compositions, development of Si3N4 grains and flexural strength (especially high-temperature flexural strength) were researched. Si3N4 ceramics doped with sintering additive of higher ionic radius had higher average aspect ratio, improved room-temperature flexural strength but degraded high-temperature flexural strength. Besides, post-heat treatment (PHT) was conducted to crystallize amorphous grain boundary phase thus improving the creep resistance and high-temperature flexural strength of SHS-fabricated Si3N4 ceramics. Excellent high-temperature flexural strength of 140 MPa~159 MPa and improved strength retention were achieved after PHT at 1400 °C.  相似文献   

11.
Enhancement of the thermal conductivity of silicon nitride is usually achieved by sacrificing its mechanical properties (bending strength). In this study, β-Si3N4 ceramics were prepared using self-synthesized Y3Si2C2 and MgO as sintering additives. It was found that the thermal conductivity of the Si3N4 ceramics was remarkably improved without sacrificing their mechanical properties. The microstructure and properties of the Si3N4 ceramics were analyzed and compared with those of the Y2O3-MgO additives. The addition of Y3Si2C2 eliminated the inherent SiO2 and introduced nitrogen to increase the N/O ratio of the grain-boundary phase, inducing Si3N4 grain growth, increasing Si3N4 grain contiguity, and reducing lattice oxygen content in Si3N4. Therefore, by replacing Y2O3 with Y3Si2C2, the thermal conductivity of the Si3N4 ceramics was significantly increased by 31.5% from 85 to 111.8Wm−1K−1, but the bending strength only slightly decreased from 704 ± 63MPa to 669 ± 33MPa.  相似文献   

12.
13.
《Ceramics International》2022,48(13):18294-18301
Si3N4 ceramics were prepared using novel two-step sintering method by mixing α-Si3N4 as raw material with nanoscale Y2O3–MgO via Y(NO3)3 and Mg(NO3)2 solutions. Si3N4 composite powders with in situ uniformly distributed Y2O3–MgO were obtained through solid–liquid (SL) mixing route. Two-step sintering method consisted of pre-deoxidization at low temperature via volatilization of in situ-formed MgSiO3 and densification at high temperature. Variations in O, Y, and Mg contents in Si3N4–Y2O3–MgO during first sintering step are discussed. O and Mg contents decreased with increasing temperature because SiO2 on Si3N4 surface reacted with MgO to form low-melting-point MgSiO3 compound, which is prone to volatilize at high temperature. By contrast, Y content hardly changed due to high-temperature stability of Y–Si–O–N quaternary compound. In the second sintering step, skeleton body was densified, and the formation of Y2Si3O3N4 secondary phase occurred simultaneously. Two-step sintered Si3N4 ceramics had lower total oxygen content (1.85 wt%) than one-step sintered Si3N4 ceramics (2.51 wt%). Therefore, flexural strength (812 MPa), thermal conductivity (92.1 W/m·K), and fracture toughness (7.6 MPa?m1/2) of Si3N4 ceramics prepared via two-step sintering increased by 28.7%, 16.9%, and 31.6%, respectively, compared with those of one-step sintered Si3N4 ceramics.  相似文献   

14.
Si3N4-ZrB2 ceramics were hot-pressed at 1500 °C using self-synthesized fine ZrB2 powders containing 2.0 wt% B2O3 together with MgO-Re2O3 (Re = Y, Yb) additives. Both Si3N4 and ZrB2 grains in the hot-pressed ceramics were featured with elongated and equiaxed morphology. The presence of elongated Si3N4 and ZrB2 grains led to the partial texture of the ceramics under the applied pressure. Vickers hardness and fracture toughness of Si3N4-ZrB2 ceramics with MgO-Re2O3 additives prepared at low temperature were about 19–20 GPa and 9–11 MPa m1/2, respectively, higher than the reported values of Si3N4-based ceramics prepared at high temperature (1800 °C or above) under the same test method.  相似文献   

15.
Results are presented concerning different mechanical pretreatments performed on silicon nitride substrates and their influence on the nucleation and growth of nanocrystalline diamond (NCD). All substrates were equally sintered and finished, but differently pretreated. Then, they were diamond coated in a microwave chemical vapor deposition system (MPCVD) for relatively short periods, using Ar/H2/CH4 gas mixtures. The main objective was to identify the best pretreatment among those proposed, while verifying how it correlates with film uniformity and surface roughness after post-growth. The effect of a molybdenum mask during growth is investigated.The top surface analysis revealed major differences in the nucleation morphology of diamond nuclei on the pretreated samples, two different nucleation types having been identified. For all pretreatments, samples exhibited a very smooth and uniform underlayer of very fine grain particles before the formation of larger aggregates, suggesting a bi-phase nucleation mechanism. When no mask is used considerable changes in the nucleation concentration are found, the resulting films showing grain enlargement near the edges, where the morphology assumes microcrystalline nature. This effect is suppressed by the use of a mask that allowed obtaining very uniform smooth films (Rrms 30 nm, thickness ∼ 1.3 μm, MUS pretreatment), indicating a strong edge effect for the unmasked case. This fact can be attributed both to increased local temperature, plasma density and gas turbulence.  相似文献   

16.
《Ceramics International》2016,42(8):9921-9925
This study investigated the effect of SiO2 content in the Y2O3–Al2O3 additive system on the microstructure, mechanical and dielectric properties of silicon nitride (Si3N4) ceramics. The total sintering additive content was fixed at 8 wt% and the amount of SiO2 was varied from 0 to 7 wt%. The crystalline phases of the samples were determined by X-ray diffraction analysis. Complete α-to-β transformation of the Si3N4 occurred during sintering of all of the samples, which indicated that the phase transformation was unaffected by the SiO2 content. However, the microstructures showed that the aspect ratio of the β-Si3N4 grains decreased and the residual porosity increased with increasing SiO2 content. Additionally, the flexural strength and the dielectric constant decreased with increasing SiO2 content because of the residual porosity and the formation of the Si2N2O phase via a reaction of SiO2 with Si3N4.  相似文献   

17.
《Ceramics International》2017,43(7):5517-5523
The effect of oxidation temperature and time on the microstructures, phase compositions, mechanical properties, and dielectric properties of porous Si3N4 ceramics was investigated in the temperature range from 900 °C to 1300 °C for 1 h, 5 h, and 24 h. The weight gain measured either at lower temperature (900 °C) for long time (24 h) or at higher temperature (1300 °C) for 1 h demonstrated that the porous Si3N4 ceramics were easily oxidized under the current test conditions. Results showed that the amount of open pores, flexural strength, compressive strength, and dielectric constant all decreased with the increase of oxidation temperature independent upon the oxidation time. The oxidation product SiO2 was low-temperature quartz in mild condition (low temperature, short time) and cristobalite in severe condition (high temperature, long time). The existence of cracks on the oxide scale was due to the phase transformation of SiO2 and thermal expansion coefficient mismatch between SiO2 and Si3N4.  相似文献   

18.
《Ceramics International》2020,46(5):6182-6190
The SiC/Si3N4 composites were fabricated with sintering process. To produce SiC/Si3N4 composite components, slurry mixtures containing Si/SiC powders were used by the slip casting method. In order to investigate the effect of dispersants and additives on the rheological properties and the body casted, slurries with concentration of 70% solid weight were prepared. It included a mixture of silicon and silicon carbide with weight ratios of 30 wt% and 70 wt%, respectively, and various weight percentages of Ball clay as lubricant and Tiron (sodium salt of benzene disulfonic acid) as dispersant at pH value of 7. After preparing the green bodies by slip casting method by using plaster mold, the samples were sintered at 1450 °C inside an atmospheric-controlled furnace under a pressure of 0.12 MPa of nitrogen gas for 2 h. By examining the rheological properties of the slurry and the sintering properties, it was concluded that the best slurry was obtained in terms of viscosity, density, porosity and strength using 5 wt% Ball clay and 0.5 wt% Tiron. Phase transformations, microstructure and morphology of the sintered specimens were accomplished by Field Emission Scanning Electron Microscopy (FESEM) examination and X-ray diffraction experimental analysis. XRD and FESEM results demonstrated that the composite fabricated by slurry containing 5 wt% Ball clay and 0.5 wt% Tiron had the least porosity without SiO2 phase.  相似文献   

19.
Heat dissipation material with programmable anisotropic property is very challenging, yet can realize the controllable thermal diffusion for heating device. In this work, anisotropic Si3N4 ceramics with oriented grains are prepared to adjust and improve the mechanical and thermal properties under the applied stress field by rolling film forming technology. Through the design of the sintering aids in the process of liquid-phase sintering, the orientation degree of the Si3N4 grains is programmable as well as the mechanical property and the thermal property of the Si3N4 ceramics. As a consequence, the obtained Si3N4 ceramics show significant anisotropy in mechanical properties and thermal conductivity. The typical fracture toughness and thermal conductivity along the grain orientation direction are 10.6 MPa⋅m1/2 and 45.45 W/(m⋅K) while they are 4.5 MPa⋅m1/2 and 66.42 W/(m⋅K) in the direction perpendicular to the oriented grain, respectively. This grain orientation method paves the way for the thermal performance design and the production of programmable heat dissipation material.  相似文献   

20.
Porous silicon nitride ceramics with high flexural strength and high porosity were directly fabricated by self-propagating high temperature synthesis (SHS). The effects of N2 pressure and Si particle size on the phase composition, microstructure, and mechanical property were investigated. N2 influences not only the thermodynamics but also the kinetics of the SHS as initial reactant. Flexural strength ranged between 67 MPa and 134 MPa with increasing N2 pressure. On the other hand, flexural strength ranged from 213 MPa to 102 MPa with different Si particle sizes. This plays an important role on the final diameter and length of β-Si3N4 grains and the formation mechanism of porous Si3N4 ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号