首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of poly(N,N-dimethylacrylamide)-g-poly(vinyl alcohol) (PDMAA-g-PVA) graft hydrogel networks were designed and prepared via a free radical polymerization route initiated by a PVA-(NH4)2Ce(NO3)6 redox reaction. Silver nanoparticles with high stability and good distribution behavior have been self-assembled by using these hydrogel networks as a nanoreactor and in situ reducing system. Meanwhile the PDMAA or PVA chains can efficiently act as stabilizing agents for the Ag nanoparticles in that Ag+ would form complex via oxygen atom and nitrogen atom, and form weak coordination bonds, thus astricting Ag+. The structure of the PDMAA-g-PVA/Ag was characterized by a Fourier transform infrared spectroscope (FTIR). The morphologies of pure PDMAA-g-PVA hydrogels and PDMAA-g-PVA/Ag nanocomposite ones were observed by a scanning electron microscopy (SEM) and transmission electron microscope (TEM). TEM micrographs revealed the presence of nearly spherical and well-separated Ag nanoparticles with diameters ranging from 10 to 20 nm, depending on their reduction routes. XRD results showed all relevant Bragg's reflection for crystal structure of Ag nanoparticles. UV–vis studies apparently showed the characteristic surface plasmon band at 410–440 nm for the existence of Ag nanoparticles within the hydrogel matrix. The swelling kinetics demonstrated that the transport mechanism belongs to non-Fickian mode for the PDMAA-g-PVA hydrogels and PDMAA-g-PVA/Ag nanocomposite ones. With increasing the DMAA proportion, the r0 and S are enhanced for each system. The assembly of Ag nanoparticles and the swelling behavior may be controlled and modulated by means of the compositional ratios of PVA to DMAA and reduction systems.  相似文献   

2.
孔杰  李国强  叶菁芸  曾戎  屠美  赵剑豪 《功能材料》2012,43(12):1662-1664
在壳聚糖/1,2-丙二醇凝胶中采用抗坏血酸原位还原硝酸银生成纳米银,进而通过碱液置换得到具有不同纳米银含量的物理交联的纳米银/壳聚糖复合水凝胶.紫外-可见光谱、X射线衍射图谱和低分辨率TEM照片的结果表明,复合水凝胶内形成了分散良好的纳米银.高分辨率TEM照片结果表明纳米银的直径在20~50nm之间,但其结晶状态并不均一.抗菌性实验证明,纳米银/壳聚糖复合水凝胶对大肠杆菌和金黄色葡萄球菌均有抗菌效果.  相似文献   

3.
A novel strategy is described for the preparation of polymeric hybrid hydrogels containing metal oxide nanoparticles as cross-linkers. TiO2 nanoparticles were functionalized by introducing amine groups onto their surfaces. The functionalized metal oxide nanoparticles were covalently bound to the polymer chains of carboxymethylcellulose and appeared to be organized as clusters with dimensions of 30 nm to 250 nm within the hydrogel. This synthesis method, based on the use of functionalized nanoparticles as cross-linkers, is of general application and it allows for the preparation of other kinds of nanoparticle/polymer hybrid hydrogels. These hybrid hydrogels may have potential applications as novel in vitro scaffolds for tissue engineering, in which the inorganic nanoparticles can simulate the nanostructured architecture of the extra-cellular matrix.  相似文献   

4.
The rapid metabolism testing of many new chemical entities enables unsuitable candidates to be eliminated from consideration at an early stage of the drug discovery process. We have developed a P450 array toward high-throughput analysis of P450-mediated metabolic reaction. The microsomes containing expressed human P450 enzymes were immobilized on the microassay plate using sol-gel chemistry. A thin-film hydrogel containing microsomes was fabricated using aqueous silicate as a starting material. The TEM image clearly showed that the nanoclusters derived from the silicate formed branched chains, and microsomes were entrapped in the silica network. The different P450 isozymes were immobilized on the microassay plate, and the metabolites by each isozyme were visualized as fluorescent images, which creates opportunity for the inhibitor assays. This method offers several advantages over use of conventional enzyme preparations, including increased storage stability, ease of product isolation from the incubation mixture, and the ability to recover and reuse the enzyme. Because this methodology enabled the development of assay system using P450 that is unstable and involves other enzymes for its function, it can be applicable to various screening assays that require complicated reactions involving many biological components.  相似文献   

5.
Nanoparticle growth in solution is a rather complicated process governed by many thermodynamic and kinetics factors. A better understanding of nanoparticle growth kinetics is of primary importance leading to a better control on the nanoparticle size and size distribution. In this work we conducted both experimental and theoretical study on the kinetics of Brust-Schiffrin reaction for the synthesis of gold nanoparticles. Using an excessive amount of thiol ligands, the nanoparticle growth was stopped at different intermediate stages. Our study revealed and confirmed that the reproducibility of Brust-Schiffrin reaction for the synthesis of gold nanoparticles with diameters around 2 nm is rather poor due to the intrinsic complexity of this two-phase reaction. The analysis results of each intermediate product by TEM showed that nanoparticles grew very rapidly at the early stage of reaction and reached a maximum value of 2.6 nm at reaction time of around 10 minutes. Further increase of reaction time led to a decrease of nanoparticle size. In addition to the experimental study, we proposed a kinetic model for nanoparticle growth in solution by assuming that the nanoparticle core expands through incremental addition of gold atoms to the existing nanoparticle nuclei. This model not only gave a relatively good fitting to the experimental data, but also provided further insight into the nucleation and core expansion stage of the nanoparticle growth, which had not been revealed in previous modeling studies.  相似文献   

6.
将N-芴甲氧羰基-D-苯丙氨酸(Fmoc-DPhe)和甲基丙烯酸缩水甘油酯(Glycidyl methacrylate,GMA)修饰的透明质酸(HA-GMA)在磷酸缓冲液中共混加热,冷却后Fmoc-DPhe分子先自组装形成超分子水凝胶,超分子水凝胶中的HA-GMA再经光照引发交联制备双网络复合水凝胶。研究该双网络水凝胶的力学性能、光学性质、微观形貌、药物缓释能力和抑菌性能。研究结果表明,双网络水凝胶比HA-GMA单网络水凝胶的力学性能强一倍左右且HA-GMA网络存在于双网络水凝胶中;光学性质显示双网络水凝胶中存在Fmoc-DPhe网络;微观形貌表明有两种水凝胶网络均存在于复合水凝胶中。当复合水凝胶包裹小分子模拟药物后,复合水凝胶达到模拟药物最大累积释放量的时间要比Fmoc-DPhe单网络水凝胶的长6 h;针对革兰氏阳性细菌的抑菌能力研究显示,双网络水凝胶的抑菌效果也比Fmoc-DPhe单网络水凝胶的更好。   相似文献   

7.
In this work, the authors succeed in direct visualization of the network structure of synthetic hydrogels with transmission electron microscopy (TEM) by developing a novel staining and network fixation method. Such a direct visualization is not carried out because sample preparation and obtaining sufficient contrast are challenging for these soft materials. TEM images reveal robust heterogeneous network architectures at mesh size scale and defects at micro-scale. TEM images also reveal the presence of abundant dangling chains on the surface of the hydrogel network. The real space structural information provides a comprehensive perspective that links bulk properties with a nanoscale network structure, including fracture, adhesion, sliding friction, and lubrication. The presented method has the potential to advance the field.  相似文献   

8.
Bottom-up tissue engineering provides a promising way to recreate complex structural organizations of native organs in artificial constructs by assembling functional repeating modules. However, it is challenging for current bottom-up strategies to simultaneously produce a controllable and immediately perfusable microfluidic network in modularly assembled 3D constructs. Here we presented a bottom-up strategy to produce perfusable microchannels in 3D hydrogels by sequentially assembling microfluidic modules. The effects of agarose–collagen composition on microchannel replication and 3D assembly of hydrogel modules were investigated. The unique property of predefined microchannels in transporting fluids within 3D assemblies was evaluated. Endothelial cells were incorporated into the microfluidic network of 3D hydrogels for dynamic culture in a house-made bioreactor system. The results indicated that the sequential assembly method could produce interconnected 3D predefined microfluidic networks in optimized agarose–collagen hydrogels, which were fully perfusable and successfully functioned as fluid pathways to facilitate the spreading of endothelial cells. We envision that the presented method could be potentially used to engineer 3D vascularized parenchymal constructs by encapsulating primary cells in bulk hydrogels and incorporating endothelial cells in predefined microchannels.  相似文献   

9.
We report here an in situ process to produce nano-composite polymer hydrogels having surfaces patterned with hydroxyapatite (HA) nanoparticles (100 nm). Poly (vinyl alcohol) (PVA) has been used as a hydrogel forming medium. A three step process, comprising precipitation of HA nanoparticles in presence of PVA molecules and freeze thawing of obtained PVA-HA emulsion, followed by critical point drying, has been devised to produce three dimensional nanocomposite hydrogels. Interaction of Ca2+ with oxygen atoms of PVA and the hydrogen bonding characteristic of the polymer have been exploited to have controlled size distribution of HA in a continuous and macroporous network of PVA. A systematic variation in the polymer concentration could be correlated with microstructural features of the hydrogel.  相似文献   

10.
A simple and efficient activation process was conducted by deposition of palladium (Pd) nanoparticles on PMMA surface using a microwave-assisted polyol method with ethanol used as the reductant. The newly synthesized Pd nanoparticles were utilized as an activator for electroless nickel deposition. TEM images revealed that Pd nanoparticles of size 4-6 nm are formed evenly over the PMMA surface. A tight, smooth and continuous Ni plating layer was coated on these Pd nanoparticle activated PMMA microspheres. In contrast, a rough and discontinuous Ni film was obtained for the sample activated with a conventional sensitization/activation procedure.  相似文献   

11.
Hydrogels with polyvinyl pyrrolidone (PVP) and alginate were synthesized and silver nanoparticles were incorporated in hydrogel network using gamma radiation. PVP (10?and 15?%) in combination with 0.5?and 1?% alginate was gamma irradiated at different doses of 25?and 40?kGy. Maximum gel percent was obtained with 15?% PVP in combination with 0.5?% alginate. The fluid absorption capacity for the PVP/alginate hydrogels was about 1881–2361?% at 24?h. Moisture vapour transmission rate (MVTR) of hydrogels containing nanosilver at 24?h was 278.44?g/(m2h). The absorption capacity and moisture permeability of the PVP/alginate–nanosilver composite hydrogel dressings show the ability of the hydrogels to prevent fluid accumulation in exudating wound. The hydrogels containing nanosilver demonstrated strong antimicrobial effect and complete inhibition of microbial growth was observed with 70?ppm nanosilver dressings. PVP/alginate hydrogels containing nanosilver with efficient fluid handling capacity and antimicrobial activity was found suitable for use as wound dressing.  相似文献   

12.
To investigate the relationship between the size and structure of TiO(2) nanoparticles, three size-selected samples of TiO(2) nanoparticles were prepared via a hydrolysis method that uses Ti[OCH(CH(3))(2)](4) as the starting material. The structures of the nanoparticles were characterized using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray absorption spectroscopy (XAS). Analysis of the XRD patterns and of the TEM images showed that the samples were dispersed, with an average particle size of approximately 30 nm (sample A), approximately 12 nm (sample B), and approximately 7 nm (sample C). Their X-ray absorption spectra indicate that samples A and B have an anatase structure, whereas sample C has a structure very similar to that of the TiO( 2) II phase, which generally arises only under high-pressure conditions. This difference can be attributed to size-induced radial pressure within the smaller nanoparticles, which plays an important role in the phase of TiO(2) nanoparticles in sample C.  相似文献   

13.
Structurally-colored photonic hydrogels which are fabricated by introducing hydrogels into thin films or photonic crystal structures are promising candidates for biosensing. Generally, the design of photonic hydrogel biosensors is based on the sensor-analyte interactions induced charge variation within the hydrogel matrix, or chemically grafting binding sites onto the polymer chains, to achieve significant volume change and color variation of the photonic hydrogel. However, relatively low anti-interference capability or complicated synthesis hinder the facile and low-cost fabrication of high-performance photonic hydrogel biosensors. Here, a facilely prepared supramolecular photonic hydrogel biosensor is developed for high-sensitivity detection of alkaline phosphatase (ALP), which is an extensively considered clinical biomarker for a variety of diseases. Responding to ALP results in the broken supramolecular crosslinking and thus increased lattice distancing of the photonic hydrogel driven by synergistic repulsive force between nanoparticles embedded in photonic crystal structure and osmotic swelling pressure. The biosensor shows sensitivity of 7.3 nm spectral shift per mU mL−1 ALP, with detection limit of 0.52 mU mL−1. High-accuracy colorimetric detection can be realized via a smartphone, promoting point-of-care sensing and timely diagnosis of related pathological conditions.  相似文献   

14.
A series of nanocomposite hydrogels (APEAg series gels) were prepared from acrylic acid, poly(ethylene glycol) methyl ether acrylate, and silver nanoparticles through in situ polymerization by UV irradiation. The effect of the content of silver nanoparticle on the properties of the nanocomposite hydrogels was investigated. Results showed that, with increasing of the content of the silver nanoparticle in the hydrogels, the crosslinking density and shear modulus of the hydrogel were not obviously changed, the electrical conductivities of the nanocomposite hydrogels increased, and their initial rate of Escherichia coli inactivation significantly increased, but their adhesive force only slightly decreased. These materials can be assessed as promising bioadhesive patch or wound-dressing material or electrical massage patch.  相似文献   

15.
A methodology is described for the preparation of pH- and temperature-responsive double network (DN) hydrogels with poly(N-isopropylacrylamide) (PNIPAM) as a tightly crosslinked 1st network, polyacrylic acid (PAA) as a loosely crosslinked 2nd network and graphene oxide (GO) as an additive. GO sheets were first prepared via an oxidation reaction and then dispersed in NIPAM aqueous solution via silanization. Free-radical polymerization of NIPAM was carried out at 20 °C in a water bath, and then subjected to UV light, leading to the formation of pH- and temperature-responsive PNIPAM/AA/GO DN hydrogels. The effects of GO sheets and AA contents on various physical properties were investigated. Results show that PNIPAM/AA/GO hydrogels undergo a large volumetric change in response to temperature. It also exhibits significantly fast swelling/deswelling compared with conventional PNIPAM hydrogel. Moreover, the PNIPAM/AA/GO hydrogels have a much better mechanical property than the conventional PNIPAM hydrogels.  相似文献   

16.
Guo Y  Shi D  Lian J  Dong Z  Wang W  Cho H  Liu G  Wang L  Ewing RC 《Nanotechnology》2008,19(17):175102
Hydroxylapatite (HA) nanoparticles were conjugated with quantum dots (QDs) for in vivo imaging. The surface structures of HA nanoparticles with conjugated quantum dots (HA-QD) were studied by transmission electron microscopy (TEM) and laser fluorescent spectroscopy. The TEM data showed that the quantum dots were well conjugated on the HA nanoparticle surfaces. The laser fluorescent spectroscopy results indicated that the HA-QD exhibited promising luminescent emission in vitro. The initial in vivo experiments revealed clear images of HA-QD from the hypodermic injected area at the emission of 600?nm. Furthermore, the optimized in vivo images of HA-QD with near-infrared emission at 800?nm were visualized after intravenous injection. These luminescent HA-QD nanoparticles may find important applications as biodegradable substrates for biomarkers and in drug delivery.  相似文献   

17.
Tip enhanced Raman scattering (TERS) microscopy is used to image antibody conjugated nanoparticles on intact cellular membranes. The combination of plasmonic coupling and the resultant electric field obtained from intermediate focusing of a radially polarized source gives rise to Raman images with spatial resolution below 50 nm. Finite element method calculations are used to explain the origins of the observed image resolution and spectroscopic signals. The observed Raman scattering provides information about the biomolecules present near the nanoparticle probes. The results show that aggregates of nanoparticles produce spectroscopic results similar to those reported from other surface enhanced Raman spectroscopies, e.g., shell isolated nanoparticle enhanced Raman spectroscopy (SHINERS) and aggregated nanoparticles; however, TERS enables the detection of isolated nanoparticles on cell membranes where the observed spectra provide information about the interaction of the specific biomolecule conjugated to the nanoparticle probe. These measurements present a new technique for exploring biomolecular interactions on the surface of cells and tissue.  相似文献   

18.
Green synthesis of silver nanoparticles (AgNPs) using Shivlingi (Bryonia laciniosa) seed extract was carried out. Characterisation of synthesised nanoparticles was accomplished through the optical absorption and photoluminescence spectrum, X‐ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. The XRD analysis further confirmed the size of nanoparticles ∼15 nm. TEM images revealed homogeneous spherical ∼10 nm Bryonia extract capped AgNPs. The biological studies indicated that both Bryonia seed extract and the nanoparticles lack anti‐microbial activity; however, the nanoparticles had better cytotoxicity and total antioxidant activity. The Lethal concentration (LC)50 value of water extract and the nanoparticles were found to be 1091 and 592 μg/ml, respectively. The lower LC50 of nanoparticles indicates that it is more cytotoxic than the crude extract. The results indicate that the Bryonia seed is safe to be used as a medicine and the formation of their nanoparticle has further enriched the chemical reactivity, energy absorption and biological mobility.Inspec keywords: silver, nanoparticles, nanomedicine, particle size, microorganisms, cellular biophysics, nanofabrication, photoluminescence, X‐ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectra, Raman spectra, antibacterial activity, biochemistryOther keywords: green synthesis, biological studies, Shivlingi seed extraction, Bryonia laciniosa, silver nanoparticles, optical absorption, photoluminescence spectrum, X‐ray diffraction, transmission electron microscopy, scanning electron microscopy, SEM, Fourier transform infrared spectroscopy, Raman spectroscopy, XRD analysis, nanoparticle size, TEM images, homogeneous spherical images, antioxidant activity, water extraction, chemical reactivity, energy absorption, biological mobility, Ag  相似文献   

19.
PVA-PAAIPN水凝胶的制备及其溶胀性质研究   总被引:12,自引:0,他引:12  
利用化学交联和循环冰冻-解冻相结合的顺序逼近法,制备了由和聚乙烯醇(PVA)和聚丙烯酸(PAA)复合的具有互穿聚合物网络(IPN)结构的高分子水凝胶。研究了交联剂含量,PAA含量和温度对水凝胶溶胀性质的影响,实验结果表明,30℃时,交联剂含量为1.0mol%的凝胶溶胀度最大,凝胶中PAA含量越大,凝胶的溶胀度越大;具有IPN结构的凝胶具有温度敏感性质;调节凝胶中PAA和交联剂的含量,可以控制凝胶突变体系的大小。  相似文献   

20.
Silica-silver heterogeneous nanocomposite particles were successfully prepared by facile route including alcohol reduction method. Thiol groups were employed as a chemical protocol to make a binding between silver nanoparticle and silica surface. After the reaction for 10 min, a large number of quasi-spherical silver nanoparticles with an average size of 6.9 nm in diameter were homogeneously formed on the surface of silica particles. The immobilized silver nanoparticles grew to large ones with an average size of 10.6 nm in diameter after additional reaction for 2 h. The resulting nanocomposite particles were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray (EDX), UV-vis spectrophotometer, and X-ray diffraction (XRD) analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号