共查询到19条相似文献,搜索用时 62 毫秒
1.
一种基于虚拟三角形的图像自动配准方法 总被引:1,自引:0,他引:1
图像配准是图像处理和分析的关键技术之一.本文提出了一种基于虚拟三角形的图像自动配准方法来处理具有全局刚体变换的图像配准问题.该方法主要分三步:首先采用改进的Harris算子从参考图像和待配准图像中分别提取角点特征,将每三个角点顺次连接起来构成一个虚拟三角形;然后运用刚体变换模型下匹配虚拟三角形对全等的准则找到全等性最好的一对虚拟三角形,利用它们的对应顶点求解刚体变换模型参数的初始值;最后根据刚体变换模型参数的初始值和一个预设的门限得到所有的匹配角点特征,通过它们求得最终的刚体变换模型参数.实际图像实验结果表明:本文提出的图像自动配准方法是正确和有效的,并具有较高的配准精度. 相似文献
2.
基于特征的自动图像配准算法 总被引:4,自引:0,他引:4
提出了一种基于特征的自动图像配准算法,它利用角点检测和相关运算在给定源图像和目标图像上自动寻找侯选匹配点,利用松驰过程确定对应特征点。算法在大多数情况下能自动完成。从实验结果看,该算法获得了理想的拼合效果。 相似文献
3.
为解决目前大多图像配准算法存在匹配精度低、实时性差的问题,本文提出了一种基于区域分块提取特征点的自动配准算法。该算法结合了Harris算子与SIFT(Scale-Invariant Feature Transform)算子的优点,先用Harris算子快速提取角点作为图像原始特征点,然后利用SIFT算子的特征描述方法对原始特征点进行描述,获得具有尺度不变性的特征点描述符,最后通过欧氏距离确定匹配点对进行图像配准。实验结果表明,该算法保留了Harris算子和SIFT算子的优点,减少了经典SIF算法提取极值点的时间,并且具有良好的鲁棒性、尺度不变性。本文针对200幅图像进行测验,当发生平移、旋转或缩放变换时,两幅图像间的匹配正确率高达95%。结果表明该算法能高效、高精度的实现图像配准。 相似文献
4.
5.
6.
7.
本文采用微分同胚变换预处理图像,得到初始化形变场,提高对形变图像的配准精度;采用Broyden族算法优化能量函数,自动确定迭代次数,提高优化效率;基于Demons算法思想引入图像梯度灰度场相似量构造能量函数,提高灰度信息少的图像配准精度。实验证明,本文算法配准精度优于改进的Demons算法,尤其在配准大形变图像时,本文算法配准精度高的优势更加明显。 相似文献
8.
合成孔径雷达(SAR)图像的自动配准长期以来都未能很好的解决,特别是高分辨率SAR图像其配准的关键是稳健的特征提取与特征匹配算法。在光学图像配准中,最常用的特征点提取算法是Harris算子,而近年来SIFT(尺度不变特性变换)算法也因其优越的性能成为当前比较流行的算法。探讨了Harris和SIFT特征提取算法在高分辨SAR图像自动配准中的应用,并选取4对有代表性的SAR图像进行了配准实验,对2种特征提取算法的运行时间、所提取匹配点对的正确率以及特征点的提取精度进行了比较。通过定性及定量分析,在同轨获取的高分辨率SAR图像配准中,SIFT均能实现精确配准,其适用性及精度均优于Harris。 相似文献
9.
针对红外图像与可见光图像的自动配准问题,提出了一种基于图像角点特征和透视变换模型的方法.首先采用自适应阈值对红外与可见光图像进行分割,然后利用Harris因子分别在分割后的红外和可见光图像上检测角点.通过分析角点邻域在原始图像上的相关性实现角点的粗匹配.接着通过RANSAC算法对角点进行细匹配,删除outliers,再... 相似文献
10.
11.
在研究红外图像成像原理与特征、传统红外图像配准方法的基础上,提出了一种改进的联合点特征与灰度特征的红外图像配准算法。首先采用经典的Harris角点检测算法提取一次角点,在一次角点的基础上对其进行下降排序,对排序结果进行不同份数的等分并提取每一部分的中间值,最后根据图像配准需求有效利用中值选择不同的特征点;该算法充分利用环形区域的旋转不变性和特征点区域灰度差异性很小的原则进行特征点匹配。实验结果表明该算法能够提取出更加精确的匹配点,能够有效的完成红外图像配准。 相似文献
12.
面向光学图像的多时相、多光谱、多传感器图像的自动配准,本文描述一个基于特征的高精度图像配准算法.它以点映射配准技术为基础,处理具有全局仿射几何失真的图像配准问题.首先,通过边缘检测和相应的后处理提取封闭边界;其次,根据边界链码相关和区域不变矩匹配策略建立边界的对应,并对对应重心即匹配点对进行一致性检测获得基元控制点;最后,估计初始变换参数,并通过显著点片的相关匹配来增加控制点个数,迭代修正变换参数以提高配准精度.多种遥感图像数据的配准实验和对比试验证实了的自动算法具有较高的可靠性和配准精度. 相似文献
13.
提出一种基于LM(Levenberg-Marquardt)算法的图像拼图方法。图像拼图是将不同时间段、不同视点获取的2幅或多幅图像拼接在一起。算法首先利用手动选取的对应点,基于线性最小二乘算法,估计出射影变换矩阵,然后利用LM优化算法,基于平方误差累加和目标函数进行最小化,当获得最优射影矩阵,利用最采样技术,将两幅图像拼图。基于真实图像实验,说明算法是简单可行的。 相似文献
14.
图像超分辨率重建是在现有红外探测器基础上提升空间分辨率的一种有效方法.超分辨率图像重建是利用一组相互之间存在亚像素位移的低分辨率图像构造出一幅高分辨率的图像,快速、高精度估计图像间的位移是其关键技术之一.提出了一种用于超分辨率重建的亚像素配准算法,算法由特征检测、像素级配准和亚像素级配准三个处理过程组成.在特征检测过程,首先采用梯度算子对图像进行边缘检测,然后对边缘点进行角点预检测,排除非角点像素点,之后再进行 Harris 角点检测,大大减少了计算量;在像素级配准过程,用 NCC 算法进行像素级配准,用统计方法去除误匹配点对;在亚像素级配准过程,先对像素级匹配点的邻域进行插值放大,再进行亚像素匹配,误匹配点剔除,相对偏移量计算.对提出的算法进行了仿真实验,结果显示本算法的速度较类似算法速度有较大的提高. 相似文献
15.
16.
针对传统图像拼接方法的不足,提出一种基于改进SIFT算法的图像拼接方法,并将其应用于无人机遥感图像拼接算法中。首先,采用Harris算子角点检测遥感图像的特征点,然后用改进的SIFT算法进行特征点的描述,通过对高维数据进行降维处理,减小运算量;匹配完成后,采用随机抽样一致性(RANSAC)算法消除误匹配;最后采用渐入渐出加权平均融合法进行图像融合。实验结果表明:采用所提出算法能有效剔除遥感图像之间的误匹配,减小时间复杂度,更好地消除拼接缝隙。 相似文献
17.
针对传统图像拼接方法的不足, 提出一种基于改进SIFT算法的图像拼接方法, 并将其应用于无人机遥感图像拼接算法中。首先, 采用Harris算子角点检测遥感图像的特征点, 然后用改进的SIFT算法进行特征点的描述, 通过对高维数据进行降维处理, 减小运算量; 匹配完成后, 采用随机抽样一致性(RANSAC)算法消除误匹配; 最后采用渐入渐出加权平均融合法进行图像融合。实验结果表明: 采用所提出算法能有效剔除遥感图像之间的误匹配, 减小时间复杂度, 更好地消除拼接缝隙。 相似文献
18.
针对传统Harris角点检测算法的图像配准过程计算量大、速度慢等问题,提出一种快速预筛选Harris角点检测算法。首先通过FAST算法快速排除大量非特征点,再通过抑制半径解决FAST角点聚簇现象,然后在FAST角点邻域内筛选出Harris角点,最后采用Brute-Force匹配方式得到精准匹配。实验结果表明:所提改进算法不仅提高了角点检测速度而且减少了冗余角点数量,在图像配准过程中有效提高了配准速度与精度,配准效果良好。 相似文献