首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The concept that some crop plants may be allelopathic to common weeds of agricultural lands is receiving greater attention as an alternative weed control strategy. Several crops showing promise are: grain and forage species such as barley (Hordeum), oat (A vena), fescue (Festuca), and sorghum (Sorghum), and the agronomic species of corn (Zea) and sunflower (Helianthus). Among the problems that hinder the conclusive demonstration of allelopathic effects of crop plants are the loss of that capacity through selection and the variability among cultivars. Recent studies to evaluate the allelopathic potential of crop plants have shown that several sunflower varieties inhibit the germination and growth of associated weeds and to a greater extent than found in several biotypes of native sunflower. Aqueous extracts of dried sunflower and rape tissue inhibited or stimulated germination and growth of weeds, and the response depended upon the source of extract, the extract concentration, and the weed species tested. The validity of bioassay results was tested in a 5-year field study with sunflower and oat grown in rotation. Weed density increased in all plots but the extent of increase was significantly less in plots of sunflower than in control plots. The use of crop plants with increased allelochemical production could limit the need for conventional herbicides to early season application with late season control provided by the crop.  相似文献   

2.
Pluchea lanceolata, an allelopathic perennial weed, has an extensive deep root and rhizome system. The objective of the present study was to determine the allelopathic potential of well water collected from weed-infested cultivated fields. Results indicate that well water recovered fromP. lanceolata-infested cultivated fields inhibited the shoot growth of pea, chick pea, mustard, and wheat under greenhouse conditions. Two phenolic compounds, phenol and phloroglucinol, were isolated and identified from collected well water using UV spectroscopy. The allelopathic potential of the aqueous extract of the two compounds was determined by growth experiments with 104 M solutions of the compounds. As a consequence of repeated irrigation with well water fromP. lanceolata-infested fields, higher levels of phenolics can accumulate in the soil, which may contribue to increased interference to crop plants. The present study is of significance since it cautions on the use of well water for irrigating cultivated fields infested with the perennial allelopathic weed (P. lanceolata) with dense subterranean systems and emphasizes the importance of controlling such weeds in cultivated fields.  相似文献   

3.
Prior cropping with grain sorghum inhibits weeds   总被引:5,自引:0,他引:5  
Three years of field data in northeastern Nebraska demonstrate that a grain sorghum crop reduces weediness in the following crop year. Weed growth was consistently lower in sorghum areas the year after strip-cropping fields with sequences of four-row bands of grain sorghum, soybeans, and corn. Percentage weed cover was significantly lower early in the year, and midsummer weed biomass was well below that found after corn and soybeans. Weed biomass in June and July following corn was two to four times that of grain sorghum strips. Inhibitory effects of grain sorghum were primarily on broadleaf weeds, often showing no action on grass weeds. No obvious differences were noted in the weed species present after the three crops. Allelopathy provides a logical explanation for the sorghum-mediated weed inhibition found in this study. The data have implications for weed management strategies in agriculture.  相似文献   

4.
Sorghum bicolor is an allelopathic crop that reduces the yield of succeeding crops. We have assessed its effect on the germination, emergence, and seedling growth of Arachis hypogea sown in soil that had had a prior sorghum cropping. A. hypogea was sown on rows and interrows of a previous sorghum crop in 1997 and 1998 in Senegal. Seedling establishment (germination rate and seedling weight) was better between rows than on rows of the previous crop. The highest concentrations of phenolic compounds occurred in the rows in 1998, while contents of row and interrow soils were similar in 1997. Vanillic acid was the main component of the six chemicals found in 1997 soils, whereas the 1998 soil samples contained mainly p-hydroxybenzoic acid, p-hydroxybenzaldehyde, vanillic, and p-coumaric acids (10 phenolics identified). The germination of peanut seeds in water (control), soil water extracts, and mixtures of pure phenolics (equivalent to those in 1997 and 1998 soil samples) was tested. All extracts inhibited germination compared to controls, but there was no significant difference among treatments, i.e., the inhibition was the same for seeds in soil solutions and those in the respective phenolic mixtures. Similarly, there were no significant differences among the germination rates in soil water extracts of rows and interrows or in the pure phenolic mixtures of rows and interrows. We propose a geometrical sowing pattern for peanuts between the rows of the previous sorghum crop to escape the latter's "allelopathic heritage."  相似文献   

5.
Why Phenolic Acids Are Unlikely Primary Allelochemicals in Rice   总被引:21,自引:0,他引:21  
Allelopathy in rice (Oryza sativa, L.) effective against weeds has been found in about 3.5% of tested rice germplasm in both laboratory and field experimentation. However, the allelochemicals responsible for growth inhibition of rice-associated weeds have not yet been identified. In the literature, phenolic acids are often mentioned as putative allelochemicals. If phenolic acids commonly reach growth inhibitory concentrations in rice ecosystems, it must be expected that the degree of tolerance to phenolic acids will vary among traditional rice cultivars or plant species adapted to rice environments having inherently different phenolic acid concentrations. Phenolic acids concentrations are normally greater in submerged than in aerobic soils. A dose–response study, however, showed that seedlings of rice cultivars adapted to submerged anaerobic soils did not have higher level of tolerance against p-hydroxybenzoic acid than did seedlings of varieties adapted to aerobic upland soils. Moreover, traditional rice cultivars had no greater tolerance than did improved cultivars that were recently bred for traits other than tolerance of phenolic acids. Similarly, there were no differences in tolerance of p-hydroxybenzoic acid between two Echinochloa weed species adapted to either anaerobic or aerobic growth conditions. Thus, neither the rice cultivars nor weed species had evolved different tolerance levels against the phenolic acid. However, all rice cultivars had significantly greater tolerance of p-hydroxybenzoic acid than did either weed species. In a second experiment, the rates at which rice plants released phenolic acids into solution cultures were measured for at least one month, the time period of greatest allelopathic activity following planting under field conditions. The maximum release rate of phenolic acids during the first month of growth was approximately 10 g/plant/day. At a conventional plant density, the release rate of phenolic acids would be approximately 1 mg/m2day. This order of release rate cannot provide concentrations remotely close to phytotoxic levels determined for these rice cultivars and weed species. The results presented in this paper do not preclude the possibility that phenolic acids might be one component in a mixture of chemicals that, when present simultaneously, are allelopathic.  相似文献   

6.
During investigations into the control of insect damage to maize crops in subsistence farming in Kenya, which involved intercropping with repellent plants, the fodder legumes silverleaf (Desmodium uncinatum) and greenleaf (D. intortum) were also found to reduce dramatically the infestation of maize by parasitic witchweeds such as Striga hermonthica. This effect was confirmed by further field testing and shown to be significantly greater than that observed with other legumes, e.g., cowpea, as were the concomitant yield increases. The mechanism was investigated, and although soil shading and addition of nitrogen fertilizer showed some benefits against S. hermonthica infestation, a putative allelopathic mechanism for D. uncinatum was observed. In screenhouse studies, a highly significant reduction in S. hermonthica infestation was obtained when an aqueous solution, eluting from pots in which D. uncinatum plants were growing, was used to irrigate pots of maize planted in soil seeded with high levels of S. hermonthica. Growth of the parasitic weed was almost completely suppressed, whereas extensive infestation occurred with the control eluate. Laboratory investigations into the allelopathic effect of D. uncinatum, using samples of water-soluble chemical components exuded from cleaned roots, demonstrated that this involved a germination stimulant for S. hermonthica and also an inhibitor for haustorial development.  相似文献   

7.
On many hillsides of Taiwan there is a unique pattern of weed exclusion byPhyllostachys edulis (bamboo) andCryptomeria japonica (conifer) in which the density, diversity, and dominance of understory species are very different. Although the physical conditions of light, soil moisture, and soil nutrients strongly favor the growth of understory in a bamboo community, the biomass of its undergrowth is significantly low, indicating that physical competition among the understory species in the bamboo and conifer communities does not cause the observed differences. However, the biochemical inhibition revealed by these two plants appeared to be an important factor. The growth ofPellionia scabra seedlings, transplanted from the study site into greenhouse pots, was evidently suppressed by the aqueous leachate of bamboo leaves but was stimulated by that of conifer leaves. The radicle growth of lettuce, rye grass, and rice plants was also clearly inhibited by the leachate and aqueous extracts of bamboo leaves but not by those of conifer leaves. Six phytotoxins,o-hydroxyphenylacetic,p-hydroxybenzoic,p-coumaric, vanillic, ferulic, and syringic acids were found in the aqueous leachate and extracts of leaves and alcoholic soil extracts ofP. edulis, while the first three compounds were absent in the extracts ofC. japonica. The phytotoxicities of extracts were correlated with the phytotoxins present in both leaves and soils. The understory species might be variously tolerant to the allelopathic compounds produced by the two plants, resulting in a differential selection of species underneath. Therefore, comparative allelopathic effects ofPhyllostachys edulis andCryptomeria japonica may play significant roles in regulating the populations of the understories.Paper No. 253 of the Scientific Journal Series of the Institute of Botany, Academia Sinica, Taipei, Taiwan. This study was supported by the National Science Council of the Republic of China.  相似文献   

8.
The basis for differential allelopathic potentials among sorghum (Sorghum bicolor L. Moench) hybrids was investigated by conducting quantitative and qualitative studies of their phenolic contents. Total phenolic content in sorghum plant parts varied within hybrids, among hybrids, and between growing seasons. Inhibition of wheat (Triticum aestivum L.) radicle growth was positively associated (r=0.66) with concentrations of total phenolics contained in plant parts. Extracts from culms contributed the higherst proportion of toxicity from sorghum plants, inhibiting radicle growth up to 74.7%. Concentrations of five phenolic acids,p-hydroxybenzoic (POH), vanillic (VAN), syringic (SYR),p-coumaric (PCO), and ferulic (FER), differed in all plant parts of the three sorghum hybrids. Concentrations of POH, VAN, and SYR were consistently higher than PCO and FER. PCO and FER wer absent from some plant parts, with FER being the most frequently missing. Inhibition of wheat radicle growth was found to be positively associated with the concentration of each phenolic acid. Vanillic acid was most highly associated (r=0.44) with inhition. Thus, above-ground sorghum tissues contained phenolic acids that contributed to allelopathic potential. Additionally, sorghum roots exuded POH, VAN, and SYR that may enhance the overall allelopathic potential of sorghum during growth and after harvest when residues remain on the soil surface or are incorporated prior to planting a subsquent crop.Journal article No. 12245 of the Missouri Agricultural Experiment Station. Product names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the products, and the use of names by USDA implies no approval of the products to the exclusion of others that may be suitable.  相似文献   

9.
The allelopathic potential ofIpomoea tricolor, a plant used in Mexican agriculture to control weeds, and tricolorin A, the major phytogrowth inhibitor present in the so-called resin glycosides of this plant, have been evaluated by testing leachates of the plant and the compound on the germination and radicle growth ofAmaranthus hypochondriacus, Echinochloa crusgalli, Senna uniflora, I. tricolor, andI. purpurea. The allelopathic potential ofI. tricolor was evaluated in a greenhouse experiment with dryI. tricolor mixed with sterile and nonsterile soil in pots.A. hypochondriacus was sown in pots containingI. tricolor, 2-chloro-4-(ethylamino)-6-(isopropylamino)-1,3,5 triazine (Gesaprim) or 1-glyphosphate, and the glyphosphate salt of isopropylamine (Faena), two different commercial herbicides used as a comparison toI. tricolor. Number and dry weights of different monocotyledonous and dicotyledonous weeds andA. hypochondriacus growing in the different treatments were measured.Ipomoea and Faena herbicide had a similar inhibitory effect on monocots.  相似文献   

10.
Aqueous Leachate of Lantana camara Kills Water Hyacinth   总被引:8,自引:0,他引:8  
Lantana camara, a terrestrial plant, was screened for allelopathic impact on water hyacinth (Eichhornia crassipes). Water hyacinth was allowed to grow in experimental pots containing 3% aqueous leachate (w/v) of Lantana twigs. The leachate was allelopathic to the growth of water hyacinth, and killed water hyacinth after 21 days under the experimental conditions. Leachate concentrations from 1–3% of Lantana were highly toxic to water hyacinth plants. Leachate from young Lantana twigs with prickly orange, pink, and yellow flowers (multicolored) was more toxic than leachate from mature twigs. This study indicates the potential for utilization of terrestrial allelopathic species such as Lantana camara to suppress the growth of water hyacinth.  相似文献   

11.
Allelopathic research of subtropical vegetation in Taiwan   总被引:2,自引:0,他引:2  
Leucaena leucocephala plantations in Kaoshu, southern Taiwan, exhibit, after several years of growth, a unique pattern of weed exclusion beneathLeucaena canopy. The pattern has been observed in manyLeucaena plantations in Taiwan and is particularly pronounced in the area where a substantial amount ofLeucaena litter has accumulated on the ground. Field data showed that the phenomenon was primarily not due to physical competition involving light, soil moisture, pH, and nutrients. Instead, aqueous extracts ofLeucaena fresh leaves, litter, soil, and seed exudate showed significantly phytotoxic effects on many test species, including rice, lettuce,Acacia confusa, Alnus formosana, Casuarina glauca, Liquidambar formosana, andMimosa pudica. However, the extracts were not toxic to the growth ofLeucaena seedlings. The decomposing leaves ofLeucaena also suppressed the growth of the aforementioned plants grown in pots but did not inhibit that ofLeucaena plants. By means of paper and thin-layer chromatography, UV-visible spectrophotometry, and high-performance liquid chromatography, 10 phytotoxins were identified. They included mimosine, quercetin, and gallic, protocatechuic,p-hydroxybenzoic,p-hydroxyphenylacetic, vanillic, ferulic, caffeic, andp-coumaric acids. The mature leaves ofLeucaena possess about 5% dry weight of mimosine, the amount varying with varieties. The seed germination and radicle growth of lettuce, rice, and rye grass were significantly inhibited by aqueous mimosine solution at a concentration of 20 ppm, while that of the forest species mentioned was suppressed by the mimosine solution at 50 ppm or above. However, the growth ofMiscanthus floridulus andPinus taiwanensis was not suppressed by the mimosine solution at 200 ppm. The seedlings ofAgeratum conzoides died in mimosine solution at 50 ppm within seven days and wilted at 300 ppm within three days. It was concluded that the exclusion of understory plants was evidently due to the allelopathic effect of compounds produced byLeucaena. The allelopathic pattern was clearly shown in the area with a heavy accumulation ofLeucaena leaf litter, which was a result of drought and heavy wind influence.Paper No. 292 of the Scientific Journal Series of the Institute of Botany, Academia Sinica, Taipei, Taiwan. This study was supported in part by a grant to C.H. Chou. Part of this paper was a MS thesis submitted by Y.L. Kuo to the Department of Forestry, National Taiwan University, and presented at the Seminar on Allelochemicals and Pheromones, sponsored by the CCNAA and AIT on June 21–26, 1982.  相似文献   

12.
Several shaded coffee plantations in Coatepec, Veracruz (Mexico) are characterized by a dense cover of herbaceous vegetation mainly dominated by species from the Commelinaceae which protect the soil from erosion and presumably contribute to regulating the abundance of other weeds. To detect their alleopathic potential, leachates from fresh, air-dried, or oven-dried plants and litter collected during different months of the year were tested uponBrassica campestris, Bidens pilosa, andRumex sp. seeds. Significant radicle growth inhibitions were obtained mainly from dried plants and litter collected during the rainy season (August). Drainage water collected from pots with fresh, chopped plants and litter produced no inhibitions until the third week of recycling the water. Concentrated soil extracts from chopped plants and litter collected after seven weeks of decomposition produced significant inhibitions on radicle growth ofRumex sp. Dry weight ofBidens pilosa was significantly reduced when grown in soils treated with fresh and chopped plants and litter exposed to natural field conditions for five weeks.  相似文献   

13.
The effects of toxic components isolated from asparagus tissue onFusarium spp. and other soil microorganisms and their effects on the susceptibility of asparagus toFusarium crown rot was investigated to determine what role allelopathic substances may play in the asparagus ecosystem and in asparagus crown rot decline. Dried sterilized asparagus crown and root tissues were incorporated into pots of 3-month-old asparagus seedlings with and withoutFusarium inoculum. Root tissue alone and treatments in which crown and root tissues were combined with theFusarium inoculum showed significant reduction of plant growth over nontreated controls. Root and crown tissues were partitioned with polar and nonpolar solvents and bioassayed on pregerminated asparagus and cress seeds. Inhibition of radicle growth was confined to the polar fractions. Further separation with paper chromatography gave several fractions that were inhibitory to radish, cress, tomato seed germination as well as inhibitory to growth of pregerminated asparagus seeds. Crude extracts from roots and crown residues were bioassayed on many different fungal isolates on Petri plates and were found to inhibit the growth of oomycetous fungi. Extracts from the roots were found to be more active than extracts from other portions of the asparagus plants.  相似文献   

14.
The allelopathic effects of root exudates ofBidens pilosa L. on seedling growth ofLactuca sativa L.,Phaseolus vulgaris L.,Zea mays L., andSorghum bicolor (L.) Moench were studied using a root exudate recirculating system that allows continuous exposure of crop plants to allelopathic chemicals. This system maintains an undisturbed rhizosphere and eliminates competition and physical contact between the donor and acceptor plants. Comparison of responses to hydrophobic and hydrophilic root exudates is made possible by removal of hydrophobic compounds using XAD-4. Treatments consisted ofB. pilosa, B. pilosa with an Amberlite XAD-4 resin column attached to the donor pot to remove hydrophobic allelochemicals, and a donor pot without weeds.B. pilosa significantly inhibited seedling growth of all crop species tested. The crop species varied in response to the root exudates, withL. sativa being most sensitive. Larger and olderB. pilosa plants caused greater inhibition of seedling growth ofL. sativa andP. vulgaris than did smaller (younger)B. pilosa plants.B. pilosa with XAD-4 caused significantly less inhibition to all crop species, exceptZ. mays, thanB. pilosa without XAD-4, indicating that the hydrophobic exudates played an important role in the allelopathic growth inhibition. Variability in species response toB. pilosa with and without XAD-4 was probably due to differences in sensitivity to hydophobic and hydrophilic allelochemicals.Supported by a grant under USDA Agreement No. 83-CRSR-2-2293. Journal Series No. 2887 of the Hawaii Institute of Tropical Agriculture and Human Resources.  相似文献   

15.
Leaf extracts ofBunias orientalis were shown to inhibit seed germination of a variety of cultivar plant species and of species cooccurring withB. orientalis in the field. Root exudate solutions and leaf litter leachates ofB. orientalis were tested for their allelopathic activity using seedling growth assays. Additionally, in comparative seedling growth assays soil cores removed from denseB. orientalis stands were tested bimonthly for elevated allelopathic effects. The impact of root exudates on seedling growth was generally weak and varied between species. Similar results were obtained for the effect ofB. orientalis leaf litter leachates on seedlings grown in sand culture relative to the effect of leaf litter leachates of a plant species mixture. When soil as a growth substrate was used, no consistent differences in seedling growth were obtained between the two litter leachate treatments. In the soil core experiment seedlings grown in soil cores collected from a denseB. orientalis stand unexpectedly showed better performance than seedlings grown in soil cores collected from a nearby mixed plant stand withoutB. orientalis, at least in early spring and late autumn. Predominating nutrient effects are, therefore, assumed to conceal a potentially increased allelopathic effect of soil beneath denseB. orientalis stands. It is concluded that other factors than allelopathy must be investigated to explain the rapid establishment of dense stands of this alien plant species.  相似文献   

16.
The allelopathic effects ofProsopis juliflora were studied both in the laboratory and in nature and compared with that ofProsopis cineraria to understand the chemical nature of allelochemics. Both species occupy the same habitats butP. cineraria does not appear to have any toxic effect on other plants under its canopy.P. juliflora is highly allelopathic and does not allow the growth of any other species. Leaf extracts and leaf leachates ofP. juliflora were inhibitory. Decaying leaves were also inhibitory at early stages of decomposition. Live roots were not found to be inhibitory in cogermination and interplanting of seeds. Chemical investigation of the extracts showed the allelopathic compounds to be phenolic in nature in both the species. Slow decomposition and heavy accumulation of leaf litter belowP. juliflora may possibly result in accumulation of toxic substances in soil layers, inhibiting growth of other species.  相似文献   

17.
Sorghum Allelopathy—From Ecosystem to Molecule   总被引:1,自引:0,他引:1  
Sorghum allelopathy has been reported in a series of field experiments following sorghum establishment. In recent years, sorghum phytotoxicity and allelopathic interference also have been well-described in greenhouse and laboratory settings. Observations of allelopathy have occurred in diverse locations and with various sorghum plant parts. Phytotoxicity has been reported when sorghum was incorporated into the soil as a green manure, when residues remained on the soil surface in reduced tillage settings, or when sorghum was cultivated as a crop in managed fields. Allelochemicals present in sorghum tissues have varied with plant part, age, and cultivar evaluated. A diverse group of sorghum allelochemicals, including numerous phenolics, a cyanogenic glycoside (dhurrin), and a hydrophobic p-benzoquinone (sorgoleone) have been isolated and identified in recent years from sorghum shoots, roots, and root exudates, as our capacity to analyze and identify complex secondary products in trace quantities in the plant and in the soil rhizosphere has improved. These allelochemicals, particularly sorgoleone, have been widely investigated in terms of their mode(s) of action, specific activity and selectivity, release into the rhizosphere, and uptake and translocation into sensitive indicator species. Both genetics and environment have been shown to influence sorgoleone production and expression of genes involved in sorgoleone biosynthesis. In the soil rhizosphere, sorgoleone is released continuously by living root hairs where it accumulates in significant concentrations around its roots. Further experimentation designed to study the regulation of sorgoleone production by living sorghum root hairs may result in increased capacity to utilize sorghum cover crops more effectively for suppression of germinating weed seedlings, in a manner similar to that of soil-applied preemergent herbicides like trifluralin.  相似文献   

18.
Benzoxazolinone detoxification is similar in plants grown under sulfur deficiency conditions and in control plants grown with an optimal S supply. However, when S-deficient plants were treated with metolachlor before benzoxazolin-2(3H)-one (BOA) incubation, detoxification was reduced, as indicated by a lower accumulation of the detoxification products BOA-6-O-glucoside and glucoside carbamate and by a loss of BOA-6-OH glucosyltransfease activity. Root colonizing microorganisms and the endophytic fungus Fusarium verticillioides participated in benzoxazolinone detoxification by converting the compound to 2-acetamidophenol (AAP) or O-hydroxyphenyl malonamic acid (OHPMA), a process accompanied by the appearance of phenoxazinone. Maize roots, however, absorbed AAP and OHPMA only in traces. Absorbed traces of OHPMA stimulated maize radicle growth, and traces of AAP stimulated cress. Phenoxazinone inhibited the growth of cress radicles at concentrations higher than 500 μM, whereas maize radicles were hardly affected. F. verticillioides did not convert benzoxazolinone to any known microbial degradation product when the medium of maize seedlings was inoculated with the fungus under sterile condition. Plant–fungus interactions seem to be important in plant survival of allelopathic attacks. This study points to a complicated network of allelopathic interactions that are influenced by biotic and abiotic factors, including herbicides.  相似文献   

19.
Sasa (Sasa cernua Makino) is a very serious weed pest. Its allelopathy was studied using lettuce, wheat, timothy, and green amaranth as testing species. Cultured in the rhizosphere soil ofSasa cernua, the seedlings were inhibited by 42–80% compared with the controls cultured in normal soil and vermiculite. The phenolic fraction extracted with 1 M NaOH from the rhizosphere soil ofS. cernua caused significant inhibitions on the seed germination and seedling growth of lettuce, timothy, green amaranth, and barnyard grass.p-Coumaric, ferulic, vanillic, andp-hydroxybenzoic acids andp-hydroxybenzaldehyde were identified as the main allelochemicals in sasa soil by HPLC and [1H]NMR. Their contents in the rhizosphere soil were 5640, 1060, 860, 810 and 630 μg/100 g soil. The neutral fraction inhibited the seed germination and seedling growth of lettuce in the TLC direct bioassay. Volatile compounds released from sasa leaves also inhibited the growth of lettuce, wheat, timothy, and green amaranth grown under light, and the growth of etiolated seedlings of barley and wheat. These results confirm thatS. cernua produces typical allelopathy through its rhizosphere soil and air space.  相似文献   

20.
The effect of low doses of gamma irradiation on the allelopathic potential ofSorghum bicolor against weeds and nitrification was investigated. The results revealed that all test doses (500, 1000 and 1500 rad) significantly increased the allelopathic activity of root exudates, aqueous extracts, and decaying residues aganst seed germination and seedling growth ofAmaranthus retroflexus. The results also indicated that all test doses stimulated the allelopathic potential of aqueous extracts and decaying residues against nitrification activity. The possible application of this approach in biological control is briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号