首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Perturbed cellular calcium homeostasis has been implicated in both apoptosis and necrosis, but the role of altered mitochondrial calcium handling in the cell death process is unclear. The temporal ordering of changes in cytoplasmic ([Ca2+]C) and intramitochondrial ([Ca2+]M) calcium levels in relation to mitochondrial reactive oxygen species (ROS) accumulation and membrane depolarization (MD) was examined in cultured neural cells exposed to either an apoptotic (staurosporine; STS) or a necrotic (the toxic aldehyde 4-hydroxynonenal; HNE) insult. STS and HNE each induced an early increase of [Ca2+]C followed by delayed increase of [Ca2+]M. Overexpression of Bcl-2 blocked the elevation of [Ca2+]M and the MD in cells exposed to STS but not in cells exposed to HNE. The cytoplasmic calcium chelator BAPTA-AM and the inhibitor of mitochondrial calcium uptake ruthenium red prevented both apoptosis and necrosis. STS and HNE each induced mitochondrial ROS accumulation and MD, which followed the increase of [Ca2+]M. Cyclosporin A prevented both apoptosis and necrosis, indicating critical roles for MD in both forms of cell death. Caspase activation occurred only in cells undergoing apoptosis and preceded increased [Ca2+]M. Collectively, these findings suggest that mitochondrial calcium overload is a critical event in both apoptotic and necrotic cell death.  相似文献   

2.
The altered kinetics of steady-state c-fos mRNA production in cultured cerebellar granule cells under excitotoxic conditions was investigated in neurons subjected to depolarising stimuli, namely, high KCl and L-glutamate (Glu), in which Ca2+ influx occurs by differing routes. Increases in intracellular-free calcium levels ([Ca2+]i) stimulated by nontoxic or toxic levels of Glu were blocked by selective N-methyl-D-aspartate (NMDA) receptor antagonism; were blocked only partially by the L-type channel blocker, nifedipine; and were unaffected by alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)/kainate receptor antagonists. Glu-induced cell death was prevented only by NMDA receptor blockade. Exposure of cells to nontoxic levels of Glu resulted in a transient increase in c-fos mRNA levels, whereas an excitotoxic dose produced a delay in the appearance of c-fos mRNA but a subsequent, progressive, and sustained (>4 hr) increase. An excitotoxic dose of Glu in combination with either nifedipine or selective NMDA receptor antagonists resulted in the normal, transient increase of c-fos mRNA levels. Chronic exposure to 55 mM KCl caused no cytotoxicity, although it resulted in a delayed, elevated increase in c-fos mRNA levels that was unaffected by NMDA receptor blockade but reverted to the normal, transient profile of c-fos mRNA formation when it was coadministered with nifedipine. The KCl-induced increase in [Ca2+]i levels was inhibited dramatically by nifedipine but was unaffected by any of the ionotropic Glu receptor antagonists. The results support the notion that the appearance of a delayed but elevated increase in steady-state c-fos mRNA levels following exposure to excitotoxic doses of Glu is mediated specifically by calcium influx via L-type voltage-gated channels.  相似文献   

3.
Intracellular calcium concentrations ([Ca2+]i) among cultured hippocampal neurons were monitored during and in the hours following an excitotoxic glutamate application to determine the time course of changes involved in delayed excitotoxicity. After a 5 min toxic insult, [Ca2+]i increased immediately and remained elevated for an hour. Subsequently, [Ca2+]i declined to normal resting levels and remained so up to 13 hr following insult. Only a few neurons displayed greatly elevated [Ca2+]i at these extended times. Survival experiments in sister cultures indicated that 85% of the neurons died after 24 hr. Therefore, intracellular calcium returned to baseline levels prior to neuronal death. Additionally, during this period when basal calcium levels had recovered, the majority of neurons responded to a second excitatory amino acid application with a second increase in [Ca2+]i.  相似文献   

4.
5.
Hyposmotic swelling-induced changes in intracellular Ca2+ concentration ([Ca2+]i) and their influence on regulatory volume decrease (RVD) were examined in rat cultured suspended cerebellar astrocytes. Hyposmotic media (50 or 30%) evoked an immediate rise in [Ca2+]i from 117 nM to a mean peak increase of 386 (50%) and 220 nM (30%), followed by a maintained plateau phase. Ca2+ influx through the plasmalemma as well as release from internal stores contributed to this osmosensitive [Ca2+]i elevation. Omission of external Ca2+ or addition of Cd2+, Mn2+, or Gd3+ did not reduce RVD, although it was decreased by La3+ (0.1-1 mM). Verapamil did not affect either the swelling-evoked [Ca2+]i or RVD. Maneuvers that deplete endoplasmic reticulum (ER) Ca2+ stores, such as treatment (in Ca2+-free medium) with 0.2 microM thapsigargin (Tg), 10 microM 2,5-di-tert-butylhydroquinone, 1 microM ionomycin, or 100 microM ATP abolished the increase in [Ca2+]i but did not affect RVD. However, prolonged exposure to 1 microM Tg blocked RVD regardless of ER Ca2+ content or cytosolic Ca2+ levels. Ryanodine (up to 100 microM) and caffeine (10 mM) did not modify [Ca2+]i or RVD. BAPTA-acetoxymethyl ester (20 microM) abolished [Ca2+]i elevation without affecting RVD, but at higher concentrations BAPTA prevented cell swelling and blocked RVD. We conclude that the osmosensitive [Ca2+]i rise occurs as a consequence of increased Ca2+ permeability of plasma and organelle membranes, but it appears not relevant as a transduction signal for RVD in rat cultured cerebellar astrocytes.  相似文献   

6.
Excitatory amino acid overstimulation of neurons can lead to a marked rise in cytoplasmic Ca2+ concentration ([Ca2+])i) and be followed by neuron death from hours to days later. If the rise in [Ca2+]i is prevented, either by removing Ca2+ from the extracellular environment or by placing Ca2+ chelators in the cytosol of the stimulated cells, the neurotoxicity associated with excitotoxins can be ameliorated. We have recently shown that neurons infected with a herpes simplex virus amplicon vector expressing cDNA for calbindin D28k responded to hypoglycemia with decreased [Ca2+]i and increased survival relative to controls. We now report that vector-infected neurons respond to glutamatergic insults with lower [Ca2+]i than controls and with increased survival. Infected neurons exposed to sodium cyanide did not respond with lower [Ca2+]i than controls, nor did they demonstrate increased survival postinsult. We examine these results in light of our earlier report and in the context of the potential of vectors like this for neuronal gene therapy.  相似文献   

7.
Oligodendrocytes and their progenitors (O-2A) express functional kainate- and DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-preferring glutamate receptors. The physiological consequences of activation of these receptors were studied in purified rat cortical O-2A progenitors and in the primary oligodendrocyte cell line CG-4. Changes in the mRNA levels of a set of immediate early genes were studied and were correlated to intracellular Ca2+ concentration, as measured by fura-2 Ca2+ imaging. Both in CG-4 and in cortical O-2A progenitors, basal mRNA levels of NGFI-A were much higher than c-fos, c-jun, or jun-b. Glutamate, kainate, and AMPA greatly increased NGFI-A mRNA and protein by activation of membrane receptors in a Ca(2+)-dependent fashion. Agonists at non-N-methyl-D-aspartate receptors promoted transmembrane Ca2+ influx through voltage-dependent channels as well as kainate and/or AMPA channels. The influx of Ca2+ ions occurring through glutamate-gated channels was sufficient by itself to increase the expression of NGFI-A mRNA. AMPA receptors were found to be directly involved in intracellular Ca2+ and NGFI-A mRNA regulation, because the effects of kainate were greatly enhanced by cyclothiazide, an allosteric modulator that selectively suppresses desensitization of AMPA but not kainate receptors. Our results indicate that glutamate acting at AMPA receptors regulates immediate early gene expression in cells of the oligodendrocyte lineage by increasing intracellular calcium. Consequently, modulation of these receptor channels may have immediate effects at the genomic level and regulate oligodendrocyte development at critical stages.  相似文献   

8.
9.
Transient, severe forebrain or global ischemia leads to delayed cell death of pyramidal neurons in the hippocampal CA1. The precise molecular mechanisms underlying neuronal cell death after global ischemia are as yet unknown. Glutamate receptor-mediated Ca2+ influx is thought to play a critical role in this cell death. In situ hybridization revealed that the expression of mRNA encoding GluR2 (the subunit that limits Ca2+ permeability of AMPA-type glutamate receptors) was markedly and specifically reduced in gerbil CA1 pyramidal neurons after global ischemia but before the onset of neurodegeneration. To determine whether the change in GluR2 expression is functionally significant, we examined the AMPA receptor-mediated rise in cytoplasmic free Ca2+ level ([Ca2+]i) in individual CA1 pyramidal neurons by optical imaging with the Ca2+ indicator dye fura-2 and by intracellular recording. Seventy-two hours after ischemia, CA1 neurons that retained the ability to fire action potentials exhibited a greatly enhanced AMPA-elicited rise in [Ca2+]i. Basal [Ca2+]i in these neurons was unchanged. These findings provide evidence for Ca2+ entry directly through AMPA receptors in pyramidal neurons destined to die. Downregulation of GluR2 gene expression and an increase in Ca2+ influx through AMPA receptors in response to endogenous glutamate are likely to contribute to the delayed neuronal death after global ischemia.  相似文献   

10.
Previous studies demonstrated that cell-to-cell contact stimulates a tyrosine phosphorylation signal transduction pathway that prevents rat ovarian surface epithelial (ROSE) cells from undergoing apoptosis. Hepatocyte growth factor (HGF), also know as scatter factor (SF), is expressed by ovarian stromal and thecal cells and has been shown to reduce cell contact in nonovarian tissues. The present studies were designed to determine whether HGF/SF promotes ROSE cells to dissociate and subsequently become apoptotic. Because an increase in intracellular free calcium ([Ca2+]i) is often an early event in the apoptotic cascade, the effects of HGF/SF on [Ca2+]i levels were also assessed. ROSE cells were cultured in serum-free medium with HGF/SF, basic fibroblast growth factor (bFGF), thapsigargin, Bay K, actinomycin D, cycloheximide, and/or BAPTA depending on the experimental design. Cell contact was assayed by time-lapse photography; [Ca2+]i levels were measured with Fluo-3, and apoptosis was assessed by in situ DNA staining. HGF/SF decreased cell contact within 1 h, increased [Ca2+]i levels by 3 h, and induced apoptosis by 6 h of culture. bFGF inhibited these HGF/SF-induced responses. The increase in [Ca2+]i appears to represent a point in the apoptotic cascade that commits ROSE cells to die. This concept is based on the observations that: 1) in the presence of the calcium chelator BAPTA, HGF/SF decreased cell contact but did not increase [Ca2+]i or apoptosis; 2) bFGF blocked HGF/SF-induced increase in [Ca2+]i; 3) bFGF did not attenuate HGF/SF's apoptotic action if exposed to cells after the increase in [Ca2+]i; and 4) RNA and protein synthesis were required for HGF/SF to increase [Ca2+]i, whereas the thapsigargin- and Bay K-induced increase in [Ca2+]i and apoptosis were independent of RNA/protein synthesis. These observations indicate that the components of the apoptotic cascade distal to the increase in [Ca2+]i are present within ROSE cells and are activated by a sustained elevation of [Ca2+]i. The present studies also show that when ROSE cells establish contact with 3T3 cells that express N-cadherin, [Ca2+]i levels are maintained at low basal levels. In contrast, cell contact with 3T3 cells that do not express N-cadherin results in elevated [Ca2+]i levels. Similarly, a synthetic N-cadherin peptide, which inhibits homophilic N-cadherin binding, increases [Ca2+]i levels. Taken together, these data indicate that homophilic N-cadherin binding between adhering cells plays an important role in maintaining calcium homeostasis. Further, these data support the concept that HGF/SF's ability to promote the dissociation of ROSE cells accounts in part for its ability to increase [Ca2+]i levels.  相似文献   

11.
The effects of the phospholipase C (PLC) inhibitor U73122 on intracellular calcium levels ([Ca2+]i) were studied in MDCK cells. U73122 elevated [Ca2+]i dose-dependently. Ca2+ influx contributed to 75% of 20 microM U73122-induced Ca2+ signals. U73122 pretreatment abolished the [Ca2+]i transients evoked by ATP and bradykinin, suggesting that U73122 inhibited PLC. The Ca2+ signals among individual cells varied considerably. The internal Ca2+ source for the U73122 response was the endoplasmic reticulum (ER) since the response was abolished by thapsigargin. The depletion of the ER Ca2+ store triggered a La3+-sensitive capacitative Ca2+ entry. Independently of the internal release and capacitative Ca2 entry, U73122 directly evoked Ca2+ influx through a La3+-insensitive pathway. The U73122 response was augmented by pretreatment of carbonylcyanide m-chlorophynylhydrozone (CCCP), but not by Na+ removal, implicating that mitochondria contributed significantly in buffering the Ca2+ signal, and that efflux via Na+/Ca2+ exchange was insignificant.  相似文献   

12.
The present paper summarizes the data obtained in studying the mechanisms of glutamate-induced deterioration of neuronal Ca2+ homeostasis. In the cultured mammalian central neurons, a short-term (< 1 min) glutamate (GLU, 100 mu) challenge is known to induce a readily reversible (transient) neuronal [Ca2+]i increase. In contrast, a long-term (15-30 min) GLU exposure leads to the appearance of high [Ca2+]i plateau or to the partial recovery of the increased [Ca2+]i. Experiments show that impaired [Ca2+]i recovery in the postglutamate period cannot be explained by the increased [Ca2+]i permeability of the neuronal membrane, as earlier considered. Moreover, a sustained elevation of [Ca2+]i during and after chronic GLU application is associated with a progressive decrease in Ca2+ permeability. The major cause of GLU-induced Ca2+ overload is the mitochondrial depolarization resulted from excessive Ca2+ influx into the mitochondria, the generation of free radicals and the opening of a "giant pore" in the inner mitochondrial membrane. This in turn suppresses both ATP synthesis and Ca2+ electrophoretic uptake into the mitochondrial matrix. In combination with [Ca2+]i-dependent acidification, this leads to the suppression of Ca2+ release from the cell via Na+/Ca2+ exchanger and Ca2+/H+ pump of the neuronal membrane. Therefore, [Ca2+]i recovery following a long-term GLU treatment becomes strongly or even irreversibly compromised.  相似文献   

13.
Our previous studies showed that early, stage I preneoplastic cells (sup+ I) are highly susceptible to apoptosis, whereas the later, stage II preneoplastic cells (sup- II) are relatively resistant. To examine possible mechanisms that might explain these differences in the regulation of apoptosis, Ca2+ homeostasis was analyzed and comparisons were made between these two Syrian hamster embryo cell lines. The Ca2+ indicator, fura-2, and fluorescent microscopy were used to measure intracellular free calcium concentrations, [Ca2+]i. The results indicated that the [Ca2+]i level in logarithmically growing sup+ I cells (approximately 100 nM) was considerably lower than that observed in sup- II cells (approximately 260 nM). Serum removal resulted in a reduction of [Ca2+]i in the sup+ I cells (approximately 82 nM), whereas the [Ca2+]i level in sup- II cells did not change. Endoplasmic reticulum (ER) calcium levels were determined by measuring thapsigargin-releasable Ca2+. Reduced ER calcium was consistently observed in cells induced to undergo apoptosis. Specifically, thapsigargin-releasable Ca2+ was greatly reduced in sup+ I cells (45 nM) as compared to sup- II cells (190 nNM) after 4 h in low serum. When sup- II cells were placed under conditions that resulted in apoptosis (thapsigargin or okadaic acid), decreased ER calcium was observed. To determine whether reduced ER calcium had a causative effect in apoptosis, ER calcium levels were exogenously increased in sup+ I cells by raising extracellular Ca2+ to 3 mM; ER calcium levels were maintained, and apoptosis was blocked. Studies were performed to determined whether the decrease in ER calcium could be attributed to reduced Ca2+ influx at the plasma membrane. To measure directly whether Ca2+ entry was decreased in sup+ I cells in 0.2% serum, Mn2+ uptake was used to monitor Ca2+ influx. The data show that in low serum, the rate of thapsigargin-induced Mn2+ entry in sup+ I cells was approximately 50% lower than that of sup- II cells, demonstrating that capacitative entry is reduced in sup+ I cells. In further support of this hypothesis, thapsigargin-treated sup+ I cells (0.2% serum) showed decreased Ca2+ entry upon raising extracellular Ca2+ from 0 to 2 mM. We report the novel finding that early preneoplastic cells, which exhibit a high propensity to undergo apoptosis, have decreased calcium entry at the plasma membrane, resulting in decreased ER calcium pools. This study provides new insight into mechanisms that can be involved in the regulation/dysregulation of apoptosis during neoplastic progression. Furthermore, the data imply that preneoplastic cells, which have developed a mechanism to maintain ER calcium, would be less susceptible to apoptosis and would thus have an increased potential for becoming transformed.  相似文献   

14.
Together with cAMP, calcium ions play an important role in the regulation of melatonin synthesis in the pineal organ of all vertebrate species, irrespective of the conspicuous phylogenetic transformation of the melatonin-producing cell, the pinealocyte. Here we address the question how the intracellular concentration of free calcium ions [Ca2+]i is regulated in directly light-sensitive trout pinealocytes and in rat pinealocytes which have lost the direct light sensitivity and respond to norepinephrine. Isolated pinealocytes identified by the S-antigen immunoreaction were investigated by means of the fura-2 technique, image analysis and patch clamp recordings. Approximately 30% of the trout pinealocytes exhibited spontaneous [Ca2+]i oscillations that were not affected by light or dark adaptation of the cells. Removal of extracellular Ca2+ or application of 10 microM nifedipine caused a reversible breakdown of the [Ca2+]i oscillations. Treatments with 60 mM KCl and nifedipine suggest that voltage-gated L-type calcium channels play a major role in the regulation of [Ca2+]i in both oscillating and nonoscillating trout pinealocytes. Experiments with thapsigargin (2 microM) revealed the presence of intracellular calcium stores in 80% of the trout pinealocytes, but their role in the regulation of [Ca2+]i remains elusive. Norepinephrine had no apparent effect on [Ca2+]i in any trout pinealocyte. In rat pinealocytes, [Ca2+]i did not show spontaneous oscillations. Norepinephrine evoked a dramatic biphasic rise in [Ca2+]i in more than 95% of the cells via stimulation of alpha1-adrenergic receptors. The response reflects a combination of calcium mobilization from intracellular, thapsigargin-sensitive calcium stores and an increased calcium influx. Voltage-gated calcium channels of the L-type are present in the rat pinealocyte membrane, but they are not involved in the norepinephrine-induced calcium response. These channels, however, mediate the increase in calcium influx which is observed in virtually all rat pinealocytes upon stimulation with acetylcholine or nicotine. The results show that the mechanisms which regulate [Ca2+]i in pinealocytes are complex and differ considerably between poikilothermic and mammalian species.  相似文献   

15.
Confocal microscopy was used to assess internal calcium level changes in response to presynaptic receptor activation in individual, isolated nerve terminals (synaptosomes) from rat corpus striatum, focusing, in particular, on the serotonin 5-HT3 receptor, a ligand-gated ion channel. The 5-HT3 receptor agonist-induced calcium level changes in individual synaptosomes were compared with responses evoked by K+ depolarization. Using the fluorescent dye fluo-3 to measure relative changes in internal free Ca2+ concentration ([Ca2+]i), K+-induced depolarization resulted in variable but rapid increases in apparent [Ca2+]i among the individual terminals, with some synaptosomes displaying large transient [Ca2+]i peaks of varying size (two- to 12-fold over basal levels) followed by an apparent plateau phase, whereas others displayed only a rise to a sustained plateau level of [Ca2+]i (two- to 2.5-fold over basal levels). Agonist activation of 5-HT3 receptors induced slow increases in [Ca2+]i (rise time, 15-20 s) in a subset (approximately 5%) of corpus striatal synaptosomes, with the increases (averaging 2.2-fold over basal) being dependent on Ca2+ entry and inhibited by millimolar external Mg2+. We conclude that significant increases in brain nerve terminal Ca2+, rivaling that found in response to excitation by depolarization but having distinct kinetic properties, can therefore result from the activation of presynaptic ligand-gated ion channels.  相似文献   

16.
Fura-2 fluorescence was used to investigate the effects of H2O2 on [Ca2+]i in the insulin-secreting cell line CRI-G1. H2O2 (1-10 mM) caused a biphasic increase in free [Ca2+]i, an initial rise observed within 3 min and a second, much larger rise following a 30-min exposure. Extracellular calcium removal blocked the late, but not the initial, rise in [Ca2+]i. Thapsigargin did not affect either response to H2O2, but activated capacitive calcium entry, an action abolished by 10 microM La3+. Simultaneous recordings of membrane potential and [Ca2+]i demonstrated the same biphasic [Ca2+]i response to H2O2 and showed that the late increase in [Ca2+]i coincided temporally with cell membrane potential collapse. Buffering Ca2+i to low nanomolar levels prevented both phases of increased [Ca2+]i and the H2O2-induced depolarization. The H2O2-induced late rise in [Ca2+]i was prevented by extracellular application of 100 microM La3+. La3+ (100 microM) inhibited the H2O2-induced cation current and NAD-activated cation (NSNAD) channel activity in these cells. H2O2 increased the NAD/NADH ratio in intact CRI-G1 cells, consistent with increased cellular [NAD]. These data suggest that H2O2 increases [NAD], which, coupled with increased [Ca2+]i, activates NSNAD channels, causing unregulated Ca2+ entry and consequent cell death.  相似文献   

17.
Changes in neuronal Ca2+ homeostasis were studied on freshly isolated dorsal root ganglion neurons of adult control mice and mice with streptozotocin (STZ)-induced diabetes. The cytoplasmic free Ca2+ concentration ([Ca2+]in) was measured using indo-1 based microfluorimetry. The participation of mitochondria in [Ca2+]in homeostasis was determined by investigation of changes which occurred after addition of mitochondrial protonophore (CCCP) to the extracellular solution. In control cells 10 microM CCCP applied before membrane depolarization induced an increase of the amplitude of depolarization-induced [Ca2+]in transients and disappearance of their delayed recovery, indicating the participation of mitochondria in fast uptake of Ca2+ ions from the cytosol during the peak of the transient and subsequent slow release them back during its decay. In diabetic animals the increase of the peak transient amplitude under the action of CCCP became diminished in small (nociceptive) neurons and the delayed elevation of [Ca2+]in disappeared in both large and small neurons. It is concluded that in diabetic conditions substantial changes occur in the Ca2+ homeostatic functions of mitochondria, manifested by decreased Ca2+ uptake in small neurons and depressed Ca2+ release into the cytosol in all types of neurons.  相似文献   

18.
Aluminum inhibition of root growth is a major world agricultural problem where the cause of toxicity has been linked to changes in cellular calcium homeostasis. Therefore, the effect of aluminum ions (Al) on changes in cytoplasmic free calcium concentration ([Ca2+]c) was followed in root hairs of wild-type, Al-sensitive and Al-resistant mutants of Arabidopsis thaliana (L.) Heynh. Generally, Al exposure resulted in prolonged elevations in tip-localized [Ca2+]c in both wild-type and Al-sensitive root hairs. However, these Al-induced increases in [Ca2+]c were not tightly correlated with growth inhibition, occurring up to 15 min after Al had induced growth to stop. Also, in 32% of root hairs examined growth stopped without a detectable change in [Ca2+]c. In contrast, Al-resistant mutants showed little growth inhibition in response to AlCl3 exposure and in no case was a change in [Ca2+]c observed. Of the other externally applied stresses tested (oxidative and mechanical stress), both were found to inhibit root hair growth, but only oxidative stress (H2O2, 10 microM) caused a prolonged rise in [Ca2+]c similar to that induced by Al. Again this increase occurred after growth had been inhibited. The lack of a tight correlation between Al exposure, growth inhibition and altered [Ca2+]c dynamics suggests that although exposure of root hairs to toxic levels of Al causes an alteration in cellular Ca2+ homeostasis, this may not be a required event for Al toxicity. The elevation in [Ca2+]c induced by Al also strongly suggests that the phytotoxic action of Al in root hairs is not through blockage of Ca2(+)-permeable channels required for Ca2+ influx into the cytoplasm.  相似文献   

19.
Cold shock elicits an immediate rise in cytosolic free calcium concentration ([Ca2+]cyt) in both chilling-resistant Arabidopsis and chilling-sensitive tobacco (Nicotiana plumbaginifolia). In Arabidopsis, lanthanum or EGTA caused a partial inhibition of both cold shock [Ca2+]cyt elevation and cold-dependent kin1 gene expression. This suggested that calcium influx plays a major role in the cold shock [Ca2+]cyt response and that an intracellular calcium source also might be involved. To investigate whether the vacuole (the major intracellular calcium store in plants) is involved, we targeted the calcium-dependent photoprotein aequorin to the cytosolic face of the vacuolar membrane. Cold shock calcium kinetics in this microdomain were consistent with a cold-induced vacuolar release of calcium. Treatment with neomycin or lithium, which interferes with phosphoinositide cycling, resulted in cold shock [Ca2+]cyt kinetics consistent with the involvement of inositol trisphosphate and inositide phosphate signaling in this response. We also investigated the effects of repeated and prolonged low temperature on cold shock [Ca2+]cyt. Differences were observed between the responses of Arabidopsis and N. plum-baginifolia to repeated cold stimulation. Acclimation of Arabidopsis by pretreatment with cold or hydrogen peroxide caused a modified calcium signature to subsequent cold shock. This suggests that acclimation involves modification of plant calcium signaling to provide a "cold memory."  相似文献   

20.
Changes in neuronal activity and extracellular concentrations of ions were measured in rat striatum for 60-90 min after intrastriatal injection of quinolinic acid, an agonist of the N-methyl-D-aspartate receptor. The excitotoxin induced bursts of synchronous electrical activity which were accompanied by rises in [K+]e (to approximately 6 mM) and decreases in [Ca2+]e (by less than 0.1 mM); [H+]e usually increased (0.1-0.3 pH unit) after a short and small (< 0.1 pH unit) alkaline shift. The magnitude and frequency of these periodic changes decreased with time; after 90 min the amplitudes fell to 10-20% of the early values and the frequency to about one every 8 min as compared to one every 2-3 min immediately after quinolinate injection. By 90 min there was an increase in [K+]e from 3.3 mM to 4.2 mM and a decrease in [Ca2+]e from 1.34 mM to 1.30 mM. It is postulated that activation of the N-methyl-D-aspartate receptor causes disturbances in neuronal activity and ion gradients; restoration of the original ionic balances raises utilization of ATP and places an additional demand on energy-producing pathways. Increased influx of calcium into neurons may lead to an enhanced accumulation and subsequent overload of mitochondria with the cation. This, in turn, could result in dysfunction of the organelles and account for the decrease in respiration and [ATP]/[ADP] that have been observed previously in this model. The results of the present study lead to the conclusion that quinolinic acid produces early changes in activity of striatal neurons and movements of several cations which may contribute to subsequent abnormalities in energy metabolism and ultimately, cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号