首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study presents a weighted pre‐emptive goal programming model formulation for coordinated reservoir operation, with easy inclusion of uncontrolled water flows. The model is combined with a multiple water inflows forecasting model, and can be used for real time reservoir operation. Water flow routing from various upstream sites is accounted by with a single compact equation. Integration of controlled and uncontrolled water flows in the optimization model simplifies the operation model, resulting in accurate computation of the downstream water flow. Multiple objectives with water storage and flow variables are used to derive optimal regulation for a reservoir system under flood conditions. For real time operations, the model can be used to determine optimal water release rates for a current period, on the basis of an optimal water release schedule for an operating horizon (T). The model is applied to the flood control operation of reservoirs in the Narmada River Basin (India), with three controlled and three uncontrolled water flows affecting the downstream flow at Hoshangabad. Reservoir water storage and downstream control point flows are zoned, with prioritized objectives used to derive the optimal water release rates. Model applications to the 1999 flood event in the Narmada River Basin with observed and forecasted inflows illustrates that, if water inflows were known through a forecasting technique well in advance, the coordinated operation of the reservoirs could substantially reduce the peak water flows at the control points. The study also indicates that uncontrolled channel flows at the damage site were sufficiently high to cause flooding at the damage site.  相似文献   

2.
This paper presents the application of autoregressive integrated moving average(ARIMA),seasonal ARIMA(SARIMA),and Jordan-Elman artificial neural networks(ANN)models in forecasting the monthly streamflow of the Kizil River in Xinjiang,China.Two different types of monthly streamflow data(original and deseasonalized data)were used to develop time series and Jordan-Elman ANN models using previous flow conditions as predictors.The one-month-ahead forecasting performances of all models for the testing period(1998-2005)were compared using the average monthly flow data from the Kalabeili gaging station on the Kizil River.The Jordan-Elman ANN models,using previous flow conditions as inputs,resulted in no significant improvement over time series models in one-month-ahead forecasting.The results suggest that the simple time series models(ARIMA and SARIMA)can be used in one-month-ahead streamflow forecasting at the study site with a simple and explicit model structure and a model performance similar to the Jordan-Elman ANN models.  相似文献   

3.
The reservoirs play a crucial role in the development of civilisation as they facilitate the storage of water for multiple purposes like hydroelectric power generation, flood control, irrigation, and drinking water etc. In order to effectively meet these multiple purposes, the knowledge of the inflow in the reservoir is essential. Apart from the historical data, future prediction of the inflows is also necessary specially in context of climate change. A two-step algorithm for the prediction of reservoir inflow to enable meticulous planning and execution of daily reservoir operation keeping the historical variation of inflow in account has been proposed. The developed algorithm takes into account the patterns in the historic inflow data using the time series analysis along with the variability in the climatic patterns using the different predictors in the machine learning model. The first step uses time series model, ARIMA method to forecast the monthly inflows, which are then used as the targets in the second step for the month-wise daily forecasting of the inflows using the two types of ensemble models, namely, averaging and boosting models in machine learning. The test results show that for both the monthly models and daily models the NRMSE and NMAE values were low for the monsoon periods compared to the non-monsoon periods. The averaging ensemble models were found to perform better than the boosting ensemble models for maximum number of months. The yearly results show an error of less than 5% between actual and predicted values for all the test cases, showing the precision in the developed algorithm. Further, the uncertainty analysis shows that the prediction done using the weighted average of the different inflow scenarios performs better than the prediction against the single inflow scenario.  相似文献   

4.
介绍了自回归移动平均模型ARIMA(p,d,q)的原理和建模方法。根据田东县近年来年降雨量特征,建立了ARIMA(1,1,12)预测模型进行分析预测,并与灰色预测模型GM(1,1)的预测结果进行对比,对比的结果是ARIMA模型的预测精度比灰色预测模型的精度明显提高。  相似文献   

5.
Daily evapotranspiration is a major component in crops water consumption management plans. Consequently, forecasting of daily evapotranspiration is the keystone of any effective water resources management plans in fragile environment similar to the Nile Delta region. The estimation of daily evapotranspiration was carried out using Surface Energy Balance System (SEBS), while the forecasting of the daily evapotranspiration was carried out using Auto Regressive Integrated Moving Average (ARIMA) and its derivative Seasonal ARIMA. Remote sensing data were downloaded from European Space Agency (ESA) and used to estimate daily evapotranspiration values. Remote sensing data collected from August 2005 till December 2009 on a monthly basis for daily evapotranspiration estimation. The application of the most adequate ARIMA (2,1,2) to the evapotranspiration data set failed to sustain the forecasting accuracy over a long period of time. Although, time series analysis of daily evapotranspiration data set showed a seasonality behavior and thus, using seasonal ARIMA [(2,1,2) (1,1,2)6] was the optimum to forecast the daily evapotranspiration over the study area and sustain the forecasting accuracy. A linear regression model was established to test the correlation between the forecasted daily evapotranspiration values using S-ARIMA model and the actual values. The forecasting model indicates an increase of the daily evapotranspiration values with about 1.3 mm per day.  相似文献   

6.
River flow forecasting is an essential procedure that is necessary for proper reservoir operation. Accurate forecasting results in good control of water availability, refined operation of reservoirs and improved hydropower generation. Therefore, it becomes crucial to develop forecasting models for river inflow. Several approaches have been proposed over the past few years based on stochastic modeling or artificial intelligence (AI) techniques. In this article, an adaptive neuro-fuzzy inference system (ANFIS) model is proposed to forecast the inflow for the Nile River at Aswan High Dam (AHD) on monthly basis. A major advantage of the fuzzy system is its ability to deal with imprecision and vagueness in inflow database. The ANFIS model divides the input space into fuzzy sub-spaces and maps the output using a set of linear functions. A historical database of monthly inflows at AHD recorded over the past 130 years is used to train the ANFIS model and test its performance. The performance of the ANFIS model is compared to a recently developed artificial neural networks (ANN) model. The results show that the ANFIS model was capable of providing higher inflow forecasting accuracy specially at extreme inflow events compared with that of the ANN model. It is concluded that the ANFIS model can be quite beneficial in water management of Lake Nasser reservoir at AHD.  相似文献   

7.
ARIMA与ANN组合预测模型在中长期径流预报中的应用   总被引:1,自引:0,他引:1  
基于时间序列预测模型及BP神经网络,提出了新的组合预测方法.该方法采用三层结构的BP神经网络来构造组合预测模型,运用时间序列模型预测方法得出的预测结果,采用历史滚动法将前5年的预测结果数据作为BP网络的输入,以当前年份的预测结果为网络期望输入,建立了ARIMA-ANN组合预报模型.利用Matlab7神经网络工具箱对塔里木河上游源流卡群水文站的年径流量进行了预报及验证.结果表明:组合模型的预报结果精度高,容错能力强,是中长期径流预报的有效方法.  相似文献   

8.
An integrated hydrologic/hydraulic model of the Kemptville Creek basin has been built using the Mike11 modeling system of the Danish Hydraulic Institute and available GIS-based watershed data. This watershed system is complex, comprising of channels, local drainage areas, lateral inflows, wetlands, and a regulated dam. The model was calibrated using measured streamflow data for five years and then validated for another five years. A wide range of methods??both qualitative and quantitative??were used to evaluate the model performance. It was found that the model can simulate high flows with a high degree of accuracy, and the low flows less satisfactorily. Additional (split-sample) validation tests were conducted for another two five-year periods, which revealed that the model is capable of performing equally well for time periods beyond those used for calibration and validation. This model is now being used for various watershed management purposes, including synthetic hydrograph generation, flood forecasting, design flood estimation, wetland function analysis, etc.  相似文献   

9.
Feedback Method of Control for Estuary Management   总被引:1,自引:0,他引:1  
A feedback method of control has been used to develop a model for optimal determination of freshwater inflow to bays and estuaries. A modification of the feedback method of control was implemented which makes the technique applicable to certain constrained optimal control problems. The modified feedback model for estuary management consists of a hydrodynamic-transport salinity model, HYD-SAL, coupled to a dynamic programming optimization model. The constraints of the model are the monthly freshwater inflows and the salinities. A quadratic criterion representing a weighted sum of squared deviations from target salinity and freshwater level is chosen as the objective function. The constrained optimal control algorithm employs a penalty function that uses a similar quadratic criterion as the objective function. This algorithm has performed efficiently for computing the optimal freshwater inflows into the Lavaca-Tres Palacios Estuary in Texas while satisfying the freshwater requirements for other components in the system.  相似文献   

10.

The protection of high quality fresh water in times of global climate changes is of tremendous importance since it is the key factor of local demographic and economic development. One such fresh water source is Vrana Lake, located on the completely karstified Island of Cres in Croatia. Over the last few decades a severe and dangerous decrease of the lake level has been documented. In order to develop a reliable lake level prediction, the application of the artificial neural networks (ANN) was used for the first time. The paper proposes time-series forecasting models based on the monthly measurements of the lake level during the last 38 years, capable to predict 6 or 12 months ahead. In order to gain the best possible model performance, the forecasting models were built using two types of ANN: the Long-Short Term Memory (LSTM) recurrent neural network (RNN), and the feed forward neural network (FFNN). Instead of classic lagged data set, the proposed models were trained with the set of sequences with different length created from the time series data. The models were trained with the same set of the training parameters in order to establish the same conditions for the performance analysis. Based on root mean squared error (RMSE) and correlation coefficient (R) the performance analysis shown that both model types can achieve satisfactory results. The analysis also revealed that regardless of the model types, they outperform classic ANN models based on datasets with fixed number of features and one month the prediction period. Analysis also revealed that the proposed models outperform classic time series forecasting models based on ARIMA and other similar methods .

  相似文献   

11.
将一种基于小波分析的自回归滑动平均求和(ARIMA)模型用于月径流的预测。首先利用小波变换良好的局部化特性,将月径流序列分解成不同时间尺度上的子序列;然后对各个子序列利用ARIMA模型进行预测。将采用基于小波分析的ARIMA模型的预测结果与直接使用ARIMA模型的预测结果进行比较,结果表明引入小波变换提高了月径流预报精度。  相似文献   

12.
大坝早期变形是一个含有已知和未知因素的不确定的复杂过程,沉降变形计算和预测在水库运营管理中具有重要意义。针对大坝变形沉降曲线非平稳的特性,利用时间序列原理建模进行预测,并与实测数据进行比较。结果表明,时间序列预报模型较好地描述了变形监测点的变化规律,预测精度优于灰色模型,更适用于实际应用。  相似文献   

13.
This paper presents a new decision-making strategy for hydropower operations to handle uncertainty of forecasting precipitation. This strategy takes into account three basic components: uncertainty of precipitation, operation policies and a risk-evaluation model. In real-time operation, precipitations with different probabilities at different forecasting levels are obtained, and these precipitations are applied to forecast inflows using a hydrological forecasting model. Based on the forecasting inflows, the operation policies and risks with different probabilities are obtained. This study implements China’s Huanren reservoir and medium-term precipitation forecasts from the Global Forecast System to study the efficiency and stability of this strategy.  相似文献   

14.
In the present study, an attempt is made to investigate and identify chaos using various techniques as well as river flow forecasting in short-term (daily) and mid-term (monthly) scales using nonlinear local approximation method (NLA) and ARIMA method. Daily and monthly flow data of Daintree River in Australia from 1969 to 2011 are used. In this respect, seven nonlinear dynamic methods including (1) average mutual information function; (2) phase space reconstruction; (3) false nearest neighbour algorithm; (4) method of surrogate data; (5) correlation dimension method; (6) Lyapunov exponent method; and (7) nonlinear local approximation are employed. The Takens’ theorem, mutual information and false nearest neighbour are used to determine the delay time and embedding dimension for the phase space reconstruction. The correlation dimensions obtained for the short term and mid-term river flow are 6.7 and 3.3, respectively. The finite dimensions obtained for the short term and mid-term river flow time series indicate the possible existence of chaos. The comparative analyses show that the NLA method is superior to ARIMA in mid-term scale while both models are acceptable for short term scale forecasting.  相似文献   

15.
High accuracy forecasting of medium and long-term hydrological runoff is beneficial to reservoir operation and management. A hybrid model is proposed for medium and long-term hydrological forecasting in this paper. The hybrid model consists of two methods, Singular Spectrum Analysis (SSA) and Auto Regressive Integrated Moving Average (ARIMA). In this model, the time series of annual runoff are first decomposed into several sub-series corresponding to some tendentious and periodic motions by using SSA and then each sub-series is predicted, respectively, through an appropriate ARIMA model, and lastly a correction procedure is conducted for the sum of the prediction results to ensure the superposed residual to be a pure random series. The annual runoff data of two reservoirs in China are analyzed as case studies. The results have been compared with the predictions made by ARIMA and Singular Spectrum Analysis-Linear Recurrent Formulae (SSA-LRF). It is shown that hybrid model has the best performance.  相似文献   

16.
The climatic conditions of the Iberian Peninsula result in an imbalance between water availability and demand, which is largely managed through the many dams that were built during the 20th century. However, dam operations modify the natural functioning of rivers and related subsystems. In this study we investigated the effect of reservoirs on river regimes in the Duero basin, which is one of the largest river basins in Spain. This involved calculation of a modified impoundment ratio index, and assessment of the correlations between monthly inflows and outflows. Water resources in the basin have decreased markedly during the last five decades, so we also studied how patterns of management have adapted to less water availability in the region. A significant correlation was found between the level of impoundment and the alteration of river regimes by dams. The degree of regulation was highly dependent on annual inflows into the reservoir, and consequently alterations to river regimes were more intense during dry years. The basic pattern of flow regulation involved the storage of water during winter and spring in preparation for high water demand in summer, when natural flows are low. A combination of trend and cluster analyses revealed three responses of reservoir managers to decreasing inflows during the study period: (i) for several reservoirs the level of storage was reduced; (ii) for many reservoirs, particularly those for hydropower production, the storages were increased; and (iii) for the remainder the storage levels were maintained by adjusting the outflows to the decreasing inflows. The results suggest the absence of a common approach to reservoir management, and the dominance of other interests over environmental concerns, particularly in the context of hydrological change in the basin.  相似文献   

17.
Forecasting stream flow is a very importance issue in water resources planning and management. The ability of three soft computing methods, least square support vector machine (LSSVM), fuzzy genetic algorithm (FGA) and M5 model tree (M5T), in forecasting daily and monthly stream flows of poorly gauged mountainous watershed using nearby hydro-meteorological data is investigated in the current study. In the first application, monthly stream flows of Hunza river are forecasted using local stream flow data of Hunza and precipitation and temperature data of nearby station. LSSVM provides slightly better forecasts than the FGA and M5T models. Stream flow and temperature inputs generally give better forecasts compared to other inputs. In the second application, daily stream flows of Hunza river are forecasted using local stream flow data of Hunza and precipitation and temperature data of nearby station. Better results are obtained from the models comprising only stream flow inputs. In general, a better accuracy is obtained from LSSVM models in relative to the FGA and M5T. The results indicate that the monthly and daily stream flows of Hunza can be accurately forecasted by using only nearby climatic data. In the third application, daily stream flows of Hunza river are forecasted using local stream flow and climatic data and the models’ accuracy is slightly increased in relative to the previous applications. LSSVM generally performs superior to the FGA and M5T in forecasting daily stream flow of Hunza river using local stream flow and climatic inputs.  相似文献   

18.
River Flow Forecasting using Recurrent Neural Networks   总被引:4,自引:4,他引:0  
Forecasting a hydrologic time series has been one of the most complicated tasks owing to the wide range of data, the uncertainties in the parameters influencing the time series and also due to the non availability of adequate data. Recently, Artificial Neural Networks (ANNs) have become quite popular in time series forecasting in various fields. This paper demonstrates the use of ANNs to forecast monthly river flows. Two different networks, namely the feed forward network and the recurrent neural network, have been chosen. The feed forward network is trained using the conventional back propagation algorithm with many improvements and the recurrent neural network is trained using the method of ordered partial derivatives. The selection of architecture and the training procedure for both the networks are presented. The selected ANN models were used to train and forecast the monthly flows of a river in India, with a catchment area of 5189 km2 up to the gauging site. The trained networks are used for both single step ahead and multiple step ahead forecasting. A comparative study of both networks indicates that the recurrent neural networks performed better than the feed forward networks. In addition, the size of the architecture and the training time required were less for the recurrent neural networks. The recurrent neural network gave better results for both single step ahead and multiple step ahead forecasting. Hence recurrent neural networks are recommended as a tool for river flow forecasting.  相似文献   

19.

Understanding the behavior of reservoirs with flow regularization formed by hydroelectric power plants is essential for assessing water availability. The operationalization of reservoirs can be influenced both by climatic characteristics and by the consequences resulting from human actions in the basin. The objective of this study was to evaluate the existing relationships between the inflows and outflows of a reservoir, as well as with the conventional streamflow gauge stations downstream of the dam. Also evaluated were trends in the behavior of minimum, average and maximum flows, in the post-operation period, considering the characteristics of rainfall and irrigation in the region. The results indicated that reservoir operationalization is strongly related to the behavior of inflows. Moreover, a reduction was also verified in all the variables analyzed related to inflows and outflows, as well as in the stations downstream of the dam, except for the maximum flow in the station farthest from the reservoir, which showed a stationary behavior. The reductions in the flows may be related to the almost three-fold increase in the area irrigated by the center pivot in the basin; however, the same cannot be said in relation to the annual rainfall regime of the region, since it showed a stationary behavior for most of the stations evaluated. The work demonstrates the importance of trend analysis of flows over the years in order to identify possible factors responsible for their variability and assist in decision making regarding measures for the recovery and preservation of water resources.

  相似文献   

20.
及时、准确的中长期水文预报能有效促进水库管理优化。以非汛期各月径流量为预报因子,通过计算所需预报年份与已有径流资料历史年份的预报因子之间的灰色关联度,遴选出与该年灰色关联度较大的年份作为代表年份。采用MATLAB数学软件构建RBF神经网络预报模型,利用选定的代表年份径流量对目标年份汛期径流量进行预报。以清河水库为例,用该模型预报汛期径流量。结果表明,模型简单可操作、运行速度快、预报效果好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号