首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Several intracellular pathogens, including Listeria monocytogenes, use components of the host actin-based cytoskeleton for intracellular movement and for cell-to-cell spread. These bacterial systems provide relatively simple model systems with which to study actin-based motility. Genetic analysis of L. monocytogenes led to the identification of the 90 kD surface-bound ActA polypeptide as the sole bacterial factor required for the initiation of recruitment of host actin filaments. Numerous host actin-binding proteins have been localized within the actin-based cytoskeleton that surrounds Listeria once it is inside a mammalian cell, including alpha-actinin, fimbrin, filamin, villin, ezrin/radixin, profilin and the vasodilator-stimulated phosphoprotein, VASP. Only VASP is known to bind directly to ActA. We sought to determine which regions of the ActA molecule interact with VASP and other components of the host microfilament system. RESULTS: We used the previously developed mitochondrial targeting assay to determine regions of the ActA protein that are involved in the recruitment of the host actin-based cytoskeleton. By examining amino-terminally truncated ActA derivatives for their ability to recruit cytoskeletal proteins, an essential element for actin filament nucleation was identified between amino acids 128 and 151 of ActA. An ActA derivative from which the central proline-rich repeats were deleted retained its ability to recruit filamentous actin, albeit poorly, but was unable to bind VASP. CONCLUSIONS: Our studies reveal the initial interactions that take place between invading Listeria and host microfilament proteins. The listerial ActA polypeptide contains at least two essential sites that are required for efficient microfilament assembly: an amino-terminal 23 amino-acid region for actin filament nucleation, and VASP-binding proline-rich repeats. Hence, ActA represents a prototype actin filament nucleator. We suggest that host cell analogues of ActA exist and are important components of structures involved in cell motility.  相似文献   

2.
The ActA protein is an essential determinant of pathogenicity that is responsible for the actin-based motility of Listeria monocytogenes in mammalian cells and cell-free extracts. ActA appears to control at least four functions that collectively lead to actin-based motility: (1) initiation of actin polymerization, (2) polarization of ActA function, (3) transformation of actin polymerization into a motile force and (4) acceleration of movement mediated by the host protein profilin.  相似文献   

3.
Actin filament assembly at the cell surface of the pathogenic bacterium Listeria monocytogenes requires the bacterial ActA surface protein and the host cell Arp2/3 complex. Purified Arp2/3 complex accelerated the nucleation of actin polymerization in vitro, but pure ActA had no effect. However, when combined, the Arp2/3 complex and ActA synergistically stimulated the nucleation of actin filaments. This mechanism of activating the host Arp2/3 complex at the L. monocytogenes surface may be similar to the strategy used by cells to control Arp2/3 complex activity and hence the spatial and temporal distribution of actin polymerization.  相似文献   

4.
The actin-based motility of Listeria monocytogenes requires the addition of actin monomers to the barbed or plus ends of actin filaments. Immunofluorescence micrographs have demonstrated that gelsolin, a protein that both caps barbed ends and severs actin filaments, is concentrated directly behind motile bacteria at the junction between the actin filament rocket tail and the bacterium. In contrast, CapG, a protein that strictly caps actin filaments, fails to localize near intracellular Listeria. To explore the effect of increasing concentrations of gelsolin on bacterial motility, NIH 3T3 fibroblasts stably transfected with gelsolin cDNA were infected with Listeria. The C5 cell line containing 2.25 times control levels of gelsolin supported significantly higher velocities of bacterial movement than did control fibroblasts (mean +/- standard error of the mean, 0.09 +/- 0.003 micro(m)/s [n = 176] versus 0.05 +/- 0.003 micro(m)/s [n = 65]). The rate of disassembly of the Listeria-induced actin filament rocket tail was found to be independent of gelsolin content. Therefore, if increases in gelsolin content result in increases in Listeria-induced rocket tail assembly rates, a positive correlation between gelsolin content and tail length would be expected. BODIPY-phalloidin staining of four different stably transfected NIH 3T3 fibroblast cell lines confirmed this expectation (r = 0.92). Rocket tails were significantly longer in cells with a high gelsolin content. Microinjection of gelsolin 1/2 (consisting of the amino-terminal half of native gelsolin) also increased bacterial velocity by more than 2.2 times. Microinjection of CapG had no effect on bacterial movement. Cultured skin fibroblasts derived from gelsolin-null mice were capable of supporting intracellular Listeria motility at velocities comparable to those supported by wild-type skin fibroblasts. These experiments demonstrated that the surface of Listeria contains a polymerization zone that can block the barbed-end-capping activity of both gelsolin and CapG. The ability of Listeria to uncap actin filaments combined with the severing activity of gelsolin can accelerate actin-based motility. However, gelsolin is not absolutely required for the actin-based intracellular movement of Listeria because its function can be replaced by other actin regulatory proteins in gelsolin-null cells, demonstrating the functional redundancy of the actin system.  相似文献   

5.
Adhesion of Listeria monocytogenes to intestinal endothelial cells is an important initial event in the pathogenesis of infection which is not well understood. The suggestion has been made that some proteins, including internalin and actin polymerisation protein (ActA), and carbohydrate molecules mediate, at least in part, the adhesion of listeria to certain cultured mammalian cells. This study investigated the role of a L. monocytogenes cell-surface protein of 104 kDa (p104) in adhesion to human intestinal enterocyte-like Caco-2 cell lines by transposon (Tn916) mutagenesis and a p104-specific monoclonal antibody (MAb-H7). Genotypic and phenotypic characteristics of Tn916-transformed L. monocytogenes strains, AAMU530 and AAMU572, revealed that these strains did not express p104, and the transposon had been inserted at a single locus in the structural gene. Strains AAMU530 and AAMU572 yielded only 10 and 6.3% adhesion to Caco-2 cells. Coating of L. monocytogenes and L. innocua wild-type strains with MAb-H7 reduced adhesion to Caco-2 cells from 100% to 50 and 45%, respectively, whereas on isotype control MAb EM-7G1 had no effect. Western blot analysis with MAb-H7 indicated that p104 is present in all Listeria spp. except in L. grayi. Furthermore, p104 is also present in internalin (BUG8) and ActA (LUT12) deficient strains, suggesting that p104 is indeed different from internalin or ActA proteins. Cytotoxicity analysis of strains AAMU530 and AAMU572 demonstrated that these strains, although haemolytic and phospholipase-positive, were avirulent when tested with a hybridoma B-lymphocyte cell line. Loss of virulence could be attributed to the interruption of adhesion of mutant strains to the hybridoma cell line. These results strongly suggest that p104 is an adhesion factor in L. monocytogenes and possibly in other Listeria species and is involved in adhesion to intestinal cells.  相似文献   

6.
We summarize recent findings on the organization of the protein actin in eucaryotic cells. In particular we focus on how actin can be used to generate a vectorial force that is required for cell movement. These forces arise from protein molecules that recruit actin to the plasma membrane in such a manner that actin filaments extend outward from the cell body. This type of actin dependent force generation has been described in a nucleation-release model, which is one of several models currently being tested to explain actin dependent cell movement. Data in support of this model has arisen unexpectedly from studies of an intracellular bacteria, Listeria monocytogenes. This bacteria uses actin to propel itself during infection of eucaryotic cells. By studying Listeria movement, the roles of several eucaryotic actin interacting proteins have been identified. One of these is zyxin, a human protein that shares important structural and possibly functional properties with ActA, an actin dependent force generating protein of Listeria. We intend to test the function of these and other actin interacting proteins in a simplified system that should facilitate precise measurement of their properties of force generation in vitro.  相似文献   

7.
Invasion of endothelial tissues may be crucial in a Listeria monocytogenes infection leading to meningitis and/or encephalitis. Internalization of L. monocytogenes into endothelial cells has been previously demonstrated by using human umbilical vein endothelial cells as a model system. However, during the crossing of the blood-brain barrier, L. monocytogenes most likely encounters brain microvascular endothelial cells which are strikingly different from macrovascular or umbilical vein endothelial cells. In the present study human brain microvascular endothelial cells (HBMEC) were used to study the interaction of L. monocytogenes with endothelial cells, which closely resemble native microvascular endothelial cells of the brain. We show that L. monocytogenes invades HBMEC in an InlB-dependent and wortmannin-insensitive manner. Once within the HBMEC, L. monocytogenes replicates efficiently over a period of at least 18 h, moves intracellularly by inducing actin tail formation, and spreads from cell to cell. Using a green fluorescent protein-expressing L. monocytogenes strain, we present direct evidence that HBMEC are highly resistant to damage by intracellularly growing L. monocytogenes. Infection of HBMEC with L. monocytogenes results in foci of heavily infected, but largely undamaged endothelial cells. Heterologous plaque assays with L. monocytogenes-infected P388D1 macrophages as vectors demonstrate efficient spreading of L. monocytogenes into HBMEC, fibroblasts, hepatocytes, and epithelial cells, and this phenomenon is independent of the inlC gene product.  相似文献   

8.
The pathogenesis of atherosclerosis has been related to infection of the arterial wall, but it is not clear whether this occurs before or after the development of lipid-containing lesions. Respiratory bacterial infection increases the expression of vascular cell adhesion molecule-1 (VCAM-1). We therefore examined whether a similar infection would enhance atherosclerosis in New Zealand White rabbits fed chow supplemented by 15% (w/w) egg yolk for 50 days. Rabbits with naturally acquired respiratory infection by Pasteurella multocida, pathogen-free (SPF) animals infected by P. multocida in the laboratory, and age-matched SPF rabbits maintained in a disease-free environment were used. Endothelial cells expressing VCAM-1 in the aorta between intercostal arteries 3 and 5 were identified using anti-VCAM-1 (Rb1/9) and an alkaline-phosphatase-linked secondary antibody and quantified in H?utchen preparations. The remainder of the aorta was stained with Sudan IV to show lipid deposition. The expression of VCAM-1 (mean +/- SEM per 10,000 cells) was 22 +/- 8 (n = 5) in the lipid-fed SPF rabbits, significantly different from that in the lipid-fed rabbits with naturally occurring infection (190 +/- 51 (n = 5)) or from rabbits infected in the laboratory (106 +/- 25 (n = 5)). The extent of Sudanophilia was significantly greater in the naturally infected rabbits (8.3 +/- 1.2%) or infected SPF rabbits (10.3 +/- 1.8%) than in the SPF rabbits (2.7 +/- 0.8%; P < 0.05). Antibiotic treatment in naturally infected rabbits reduced the number of cells expressing VCAM-1 and the extent of the Sudanophilia to baseline levels. Thus, Sudanophilia is enhanced by bacterial infection in rabbits fed egg yolk and is associated with a significant increase in VCAM-1.  相似文献   

9.
Shigella flexneri is a gram-negative bacterium that causes diarrhea and dysentery by invasion and spread through the colonic epithelium. Bacteria spread by assembling actin and other cytoskeletal proteins of the host into "actin tails" at the bacterial pole; actin tail assembly provides the force required to move bacteria through the cell cytoplasm and into adjacent cells. The 120-kDa S. flexneri outer membrane protein IcsA is essential for actin assembly. IcsA is anchored in the outer membrane by a carboxy-terminal domain (the beta domain), such that the amino-terminal 706 amino acid residues (the alpha domain) are exposed on the exterior of the bacillus. The alpha domain is therefore likely to contain the domains that are important to interactions with host factors. We identify and characterize a domain of IcsA within the alpha domain that bears significant sequence similarity to two repeated domains of rickettsial OmpA, which has been implicated in rickettsial actin tail formation. Strains of S. flexneri and Escherichia coli that carry derivatives of IcsA containing deletions within this domain display loss of actin recruitment and increased accessibility to IcsA-specific antibody on the surface of intracytoplasmic bacteria. However, site-directed mutagenesis of charged residues within this domain results in actin assembly that is indistinguishable from that of the wild type, and in vitro competition of a polypeptide of this domain fused to glutathione S-transferase did not alter the motility of the wild-type construct. Taken together, our data suggest that the rickettsial homology domain of IcsA is required for the proper conformation of IcsA and that its disruption leads to loss of interactions of other IcsA domains within the amino terminus with host cytoskeletal proteins.  相似文献   

10.
The property of listeriolysin (LLO) to introduce soluble passenger proteins into the cytosol of antigen-presenting cells allows the induction of CD8+ cytotoxic T cells against such antigens. To overcome the potential problem of presentation of the immunodominant epitope LL091-99 by H-2Kd, a variant LLO92A was established in which Tyr 92 was replaced by Ala. Immunization of BALB/c mice with purified LLO92A failed to stimulate cytotoxic T cells specific for either the epitope LLO91-99 or for any other LLO-derived peptide. Injection of mixtures of purified LLO92A and soluble nucleoprotein (NP) of influenza virus into mice resulted in a strong cytotoxic T cell response exclusively directed against NP. The LLO92A variant was successfully used to generate, propagate and characterize a CD8 T cell line specific for the membrane-bound virulence factor ActA of Listeria monocytogenes. Interestingly, wildtype ActA bound to the surface of live L. monocytogenes was not presented by MHC class I molecules to the CD8+ T cell line.  相似文献   

11.
The dystrophin rod domain is composed of 24 spectrin-like repeats and was thought to act mainly as a flexible spacer between the amino-terminal actin binding domain and carboxyl-terminal membrane-associated domains. We previously demonstrated that a fragment of the dystrophin rod domain also binds F-actin. However, the nature and extent of rod domain association with F-actin is presently unclear. To begin addressing these questions, we characterized two recombinant proteins representing adjacent regions of the dystrophin rod. DYS1416 (amino acids 1416-1880) bound F-actin with a Kd of 14.2 +/- 5.2 microM and a stoichiometry of 1 mol:mol of actin. However, DYS1030 (amino acids 1030-1494) failed to bind F-actin, suggesting that not all rod domain repeats are capable of binding F-actin. Interestingly, DYS1416 corresponds to a unique region of the dystrophin rod rich in basic amino acids, whereas DYS1030 is composed mainly of acidic repeats. This observation suggested that DYS1416 may interact with acidic actin filaments through an electrostatic interaction. Supporting this hypothesis, actin binding by DYS1416 was dramatically inhibited by increasing ionic strength. We suggest that electrostatic interactions between basic spectrin-like repeats and actin filaments may contribute to the actin binding activity of other members of the actin cross-linking protein family.  相似文献   

12.
The sarcomeric Z-disk, the anchoring plane of thin (actin) filaments, links titin (also called connectin) and actin filaments from opposing sarcomere halves in a lattice connected by alpha-actinin. We demonstrate by protein interaction analysis that two types of titin interactions are involved in the assembly of alpha-actinin into the Z-disk. Titin interacts via a single binding site with the two central spectrin-like repeats of the outermost pair of alpha-actinin molecules. In the central Z-disk, titin can interact with multiple alpha-actinin molecules via their C-terminal domains. These interactions allow the assembly of a ternary complex of titin, actin and alpha-actinin in vitro, and are expected to constrain the path of titin in the Z-disk. In thick skeletal muscle Z-disks, titin filaments cross over the Z-disk centre by approximately 30 nm, suggesting that their alpha-actinin-binding sites overlap in an antiparallel fashion. The combination of our biochemical and ultrastructural data now allows a molecular model of the sarcomeric Z-disk, where overlapping titin filaments and their interactions with the alpha-actinin rod and C-terminal domain can account for the essential ultrastructural features.  相似文献   

13.
Vaccinia uses actin-based motility for virion movement in host cells, but the specific protein components have yet to be defined. A cardinal feature of Listeria and Shigella actin-based motility is the involvement of vasodilator-stimulated phosphoprotein (VASP). This essential adapter recognizes and binds to actin-based motility 1 (ABM-1) consensus sequences [(D/E)FPPPPX(D/E), X = P or T] contained in Listeria ActA and in the p90 host-cell vinculin fragment generated by Shigella infection. VASP, in turn, provides the ABM-2 sequences [XPPPPP, X = G, P, L, S, A] for binding profilin, an actin-regulatory protein that stimulates actin filament assembly. Immunolocalization using rabbit anti-VASP antibody revealed that VASP concentrates behind motile virions in HeLa cells. Profilin was also present in these actin-rich rocket tails, and microinjection of 10 microM (intracellular) ABM-2 peptide (GPPPPP)3 blocked vaccinia actin-based motility. Vinculin did not colocalize with VASP on motile virions and remained in focal adhesion contacts; however, another ABM-1-containing host protein, zyxin, was concentrated at the rear of motile virions. We also examined time-dependent changes in the location of these cytoskeletal proteins during vaccinia infection. VASP and zyxin were redistributed dramatically several hours before the formation of actin rocket tails, concentrating in the viral factories of the perinuclear cytoplasm. Our findings underscore the universal involvement of ABM-1 and ABM-2 docking sites in actin-based motility of Listeria, Shigella, and now vaccinia.  相似文献   

14.
We have studied depolarization-induced regulation of actin assembly in exocytotically active areas of dissociated chick sympathetic neurons. Active areas were identified with the fluorescent dye FM1-43 which labels synaptic vesicles that recycle in these regions. Exocytosis (electrically stimulated) was monitored in real time through depletion of FM1-43 fluorescence. To study depolarization-induced disassembly of actin in the FM1-43-stained regions, the cells were fixed after different periods of depolarization and stained with rhodamine phalloidin, which binds preferentially to the filamentous form of actin. In active regions, actin disassembles and reassembles during continuous 2 min depolarization. Actin disassembly that occurs after the first 25 s of depolarization was detected by a reduction in rhodamine phalloidin staining and confirmed by correlative electron microscopy. Immunogold staining revealed that actin is abundant throughout resting terminals. In some experiments, actin filaments were stabilized by loading cells with unlabelled phalloidin before stimulating secretion. Stabilizing the filaments does not alter the initial release but strongly reduces the release rate at later stages. These data are consistent with a model in which partial disassembly of actin filaments is necessary for facilitating the transport of vesicles within the terminal and reassembly is necessary for limiting that movement.  相似文献   

15.
Mouse spleen T cells can adoptively transfer immunity to Listeria monocytogenes; this activity was markedly enhanced by stimulation with Con A in vitro before transfer. The enhanced and prolonged protection against L. monocytogenes in vivo was correlated with enhanced lysis in vitro of target cells infected with strains of L. monocytogenes that produce listeriolysin O (LLO). One of the targets of such cytotoxic cells from BALB/c (H2d) mice was a peptide that corresponded to amino acids 91 to 99 (p91-99) of the LLO molecule, which satisfies the binding motif of H2-Kd. Listeria-immune CD3+CD8+, but not CD3+CD8-, cells could also lyse H-2-incompatible, infected target cells. Immune cells from C57BL/6 (H2b) mice lysed allogeneic H-2d target cells infected with L. monocytogenes or a Bacillus subtilis transformant that secretes LLO, but did not lyse targets pulsed with p91-99. This H2-unrestricted cytolysis was therefore directed at a fragment of the LLO molecule other than p91-99. Listeria-infected bone marrow macrophages from congenic and recombinant strains of mice were lysed only when they shared the H2-T region or were Qa1-compatible with the immune cytotoxic cells; sharing of the H2-D, Q, or M region was insufficient. Thus, the immune response to L. monocytogenes included cytolytic CD8+ cells that recognized endogenously processed Listeria-derived Ags in the context of the class Ia H2-K molecule, as well as a class Ib H2-T molecule.  相似文献   

16.
Actin in eukaryotic cells is found in different pools, with filaments being organized into a variety of supramolecular assemblies. To investigate the assembly and functional relationships between different parts of the actin cytoskeleton in one cell, we studied the morphology and dynamics of cables and patches in yeast. The fine structure of actin cables and the manner in which cables disassemble support a model in which cables are composed of a number of overlapping actin filaments. No evidence for intrinsic polarity of cables was found. To investigate to what extent different parts of the actin cytoskeleton depend on each other, we looked for relationships between cables and patches. Patches and cables were often associated, and their polarized distributions were highly correlated. Therefore, patches and cables do appear to depend on each other for assembly and function. Many cell types show rearrangements of the actin cytoskeleton, which can occur via assembly or movement of actin filaments. In our studies, dramatic changes in actin polarization did not include changes in filamentous actin. In addition, the concentration of actin patches was relatively constant as cells grew. Therefore, cells do not have bursts of activity in which new parts of the actin cytoskeleton are created.  相似文献   

17.
PD98059, a specific inhibitor of MEK-1 mitogen-activated protein (MAP) kinase kinase, blocked Listeria monocytogenes invasion into HeLa epithelial cells. The effects of PD98059 were reversible, as adherent extracellular bacteria were internalized upon removal of the drug. Previously, we reported that L. monocytogenes could activate ERK-1 and ERK-2 MAP kinases through the action of listeriolysin O (LLO) on the host cell (P. Tang, I. Rosenshine, P. Cossart, and B. B. Finlay, Infect. Immun. 64:2359-2361, 1996). We have now found that two other MAP kinase pathways, those of p38 MAP kinase and c-Jun N-terminal kinase, are also activated by wild-type L. monocytogenes. Mutants lacking functional LLO (hly mutants) were still invasive but only activated ERK-2 and only activated it at later (90-min) postinfection times. Two inhibitors of L. monocytogenes invasion, cytochalasin D, which disrupts actin polymerization, and wortmannin, which blocks phosphatidylinositol (PI) 3-kinase activity, did not block ERK-2 activation by wild-type L. monocytogenes and hly mutants. However, genistein, an inhibitor of tyrosine kinases, and PD98059 both blocked invasion and decreased ERK-2 activation. These results suggest that MEK-1 and ERK-2 activities are essential for L. monocytogenes invasion into host epithelial cells. This is the first report to show that a MAP kinase pathway is required for bacterial invasion.  相似文献   

18.
Entry of Listeria monocytogenes into nonphagocytic cells requires the inlAB gene products. InlA and InlB are bacterial cell wall-associated polypeptides that can be released by sodium dodecyl sulfate treatment. By applying more gentle extraction methods, we have purified InlB in its native form. Treatment of bacteria with various nondenaturating agents including mutanolysin, thiol reagents, sodium chloride, and detergents like Triton X-100 or 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate did not release substantial amounts of InlB from the bacterial cell wall. Instead, InlB was nearly quantitatively extracted in a solubilized form by treatment of bacteria with 1 M Tris-Cl or other protonated amines at pH 7.5. However, the reduced solubility of the extracted InlB in low-salt buffers hampered further biochemical purification. A panel of monoclonal antibodies against listerial Tris-Cl extracts containing InlB was therefore produced to generate reagents for use in affinity chromatography. One of the monoclonal antibodies enabled purification of the InlB protein to homogeneity with relatively high yields. When added externally, purified InlB associated with the surface of noninvasive bacteria such as Listeria innocua or an L. monocytogenes inlB2 mutant, where it promoted entry of these strains into Vero cells >300- and 17-fold, respectively. This effect was even more dramatic for HeLa cells, where the observed invasion was increased about 9,000- and 4,000-fold, respectively. The availability of purified native, invasion-competent InlB will allow analysis of the molecular basis of InlB-mediated entry into tissue culture cell lines in greater detail.  相似文献   

19.
We report that the actin assembly inhibitor latrunculin-A (LAT-A) causes complete disruption of the yeast actin cytoskeleton within 2-5 min, suggesting that although yeast are nonmotile, their actin filaments undergo rapid cycles of assembly and disassembly in vivo. Differences in the LAT-A sensitivities of strains carrying mutations in components of the actin cytoskeleton suggest that tropomyosin, fimbrin, capping protein, Sla2p, and Srv2p act to increase actin cytoskeleton stability, while End3p and Sla1p act to decrease stability. Identification of three LAT-A resistant actin mutants demonstrated that in vivo effects of LAT-A are due specifically to impairment of actin function and implicated a region on the three-dimensional actin structure as the LAT-A binding site. LAT-A was used to determine which of 19 different proteins implicated in cell polarity development require actin to achieve polarized localization. Results show that at least two molecular pathways, one actin-dependent and the other actin-independent, underlie polarity development. The actin-dependent pathway localizes secretory vesicles and a putative vesicle docking complex to sites of cell surface growth, providing an explanation for the dependence of polarized cell surface growth on actin function. Unexpectedly, several proteins that function with actin during cell polarity development, including an unconventional myosin (Myo2p), calmodulin, and an actin-interacting protein (Bud6/Aip3p), achieved polarized localization by an actin-independent pathway, revealing interdependence among cell polarity pathways. Finally, transient actin depolymerization caused many cells to abandon one bud site or mating projection and to initiate growth at a second site. Thus, actin filaments are also required for maintenance of an axis of cell polarity.  相似文献   

20.
We have previously shown that vaccines expressing virus-derived cytotoxic-T-lymphocyte (CTL) epitopes as short minigenes can confer effective protection against virus challenges, and here we extend these studies to the bacterium Listeria monocytogenes. Host defense against this important human pathogen appears largely T cell mediated, and a nonamer CTL epitope from the listeriolysin O (LLO) protein has been identified in BALB/c mice. We have synthesized this nonamer as a minigene, expressed it in a recombinant vaccinia virus (VV-list), and used this to immunize mice. Memory CTLs cultured from VV-list-immunized mice specifically lyse target cells pulsed with a nonamer peptide identified at LLO amino acid residues 91 to 99. Four weeks postimmunization, mice were challenged with L. monocytogenes. By day 6 following challenge with a sublethal dose of L. monocytogenes, mice immunized with VV-list showed a approximately 2,000- to 6,000-fold reduction in bacteria CFU in the spleen and liver. At this time point, with control mice, bacterial were readily detectable by Gram stain of the liver but were undetectable in the VV-list-immunized animals. Additionally, when a normally lethal dose of bacteria was given, death was delayed in VV-list-immunized animals. This study has demonstrated that a single immunization with a recombinant vaccinia virus bearing only nine amino acids from a bacterial pathogen can induce specific CTLs able to confer partial protection against bacterial challenge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号