首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Nanocomposite fibers made from polyacrylonitrile (PAN) containing carbon nanotubes (CNTs) and cobalt ferrite (CoFe2O4) nanoparticles were fabricated by electrospinning. The 10–25 nm CoFe2O4 nanoparticles were made by a simple hydrothermal process. Characterization by X‐ray diffraction confirmed that the CNTs and the CoFe2O4 nanoparticles were successfully incorporated into the PAN matrix. Scanning electron microscopy showed nanocomposite fibers with regular morphologies. Transmission electron microscopy revealed the internal distribution of the CNTs and CoFe2O4 nanoparticles. The nanocomposite fibers exhibited effective electromagnetic interference shielding attenuation of about 3.9 dB. Magnetic measurement using a vibrating sample magnetometer showed saturation magnetization of 4.7 emu g−1, thus this property can be accurately tailored by adjusting the loading of CoFe2O4 nanoparticles. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

2.
《Ceramics International》2020,46(1):317-324
In this study, the influence of swift heavy ions (SHI) [C6+ (80 MeV) and O7+ (100 MeV)] irradiation on microwave (MW) absorbing properties of cobalt ferrite nanoparticles/exfoliated nanographites/poly(methylmethacrylate) (CoFe2O4/NG/PMMA) nanocomposites was investigated in the frequency range of 2–18 GHz. This work is the first attempt to study the comprehensive effects of SHI irradiation on MW absorbing properties of polymer nanocomposites. The scanning electron micrographs of the nanocomposites reveal monotonic improvement in the dispersion of nanofillers (CoFe2O4 and NG) with an increase of irradiation dose. With an increase in the fluence of ions, the room temperature saturation magnetization was observed to decrease monotonically, whereas a reverse trend was detected for the coercivity. The SHI irradiated nanocomposites exhibited a relatively stronger MW absorption as well as a higher effective bandwidth of absorption. A minimum reflection loss (RLmin) of −36.7 dB (99.98% MW absorption) and a broad bandwidth (for RL ≤ −10 dB) of ~7.1 GHz were detected in O7+ (100 MeV) SHI irradiated nanocomposite at the fluence of 1 × 1012 ions/cm2. The results demonstrate that SHI irradiation can used as an effective tool to tailor and enhance the MW absorption in light-weight CoFe2O4/NG/PMMA nanocomposites.  相似文献   

3.
We have studied the temperature‐dependent transport and magnetic properties of the nanocomposites, containing varied amounts of CoFe2O4, NiFe2O4, and Fe3O4 nanoparticles embedded in the conducting poly(3,4‐ethylenedioxythiophene) or PEDOT matrix, in the temperature range 77–300 K. Resistivities of all the composites, including pure PEDOT follows the Mott VRH relation ρ = ρ0 T−1/4 over the studied temperature range. This suggests that hopping is the mechanism of transport in these systems. Plots of (lnρ − lnρ0)/A as a function of temperature for all the studied samples are found to collapse on a single curve. Although, the conduction mechanism does not change with nanoparticle inclusions in the polymer matrix, the hopping parameters change in the nanocomposites. Magnetic studies of ferrite nanoparticles and nanocomposites show signature of superparamagnetic blocking, with a distribution of particle size. The spin structure on the surface of any particle is different from that of the core. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

4.
Ozone/hydrogen peroxide batch treatment was utilized to study the degradation of the steroidal hormone estrone (E1). The competition kinetics method was used to determine the rate constants of reaction for direct ozone and E1, and for hydroxyl radicals and E1 at three pH levels (4, 7, and 8.5), three different molar O3/H2O2 ratios (1:2, 2:1, and 4:1) and a temperature about 20°C. The average second-order rate constants for direct ozone-E1 reaction were determined as 6.2?×?103?±?3.2?×?103 M?1s?1, 9.4?×?105?±?2.7?×?105 M?1s?1, and 2.1?×?107?±?3.1?×?106 M?1s?1 at pH 4, 7, and 8.5, respectively. It was found that pH had the greatest influence on the reaction rate, whereas O3/H2O2 ratio was found to be slightly statistically significant. For the hydroxyl radical-E1 reaction, apparent rate constants ranged from 1.1?×?1010 M?1s?1 to 7.0?×?1010 M?1s?1 with an average value of 2.6?×?1010 M?1s?1. Overall, O3/H2O2 is shown to be an effective treatment for E1.  相似文献   

5.
Nano-Fe2O3 and CoFe2O4 were suspended in molten salt of alkali-metal chloride (LiCl-KCl-CsCl) and their catalytic activity in electrochemical ammonia synthesis was evaluated from potentiostatic electrolysis at 600 K. The presence of nanoparticle suspension in the molten chloride resulted in improved production of NH3, recording NH3 synthesis rate of 1.78×10?10 mol s?1 cm?2 and 3.00×10?10 mol s?1 cm?2 with CoFe2O4 and Fe2O3, which are 102% and 240% higher than that without the use of a nanocatalyst, respectively. We speculated that the nanoparticles triggered both the electrochemical reduction of nitrogen and also chemical reaction between nitrogen and hydrogen that was produced from water electro-reduction on cathode. The use of nanocatalysts in the form of suspension offers an effective way to overcome the sluggish nature of nitrogen reduction in the molten chloride electrolyte.  相似文献   

6.
《Ceramics International》2016,42(3):4246-4255
Rare-earth (RE) substituted cobalt ferrite CoFe1.9RE0.1O4 (RE=Pr3+, Sm3+, Tb3+, Ho3+) nanoparticles are synthesized by a facile hydrothermal method without any template and surfactant. The effects of RE3+ substitution on structural, magnetic and adsorption properties of cobalt ferrite nanoparticles are investigated. Structure, morphology, particle size, chemical composition and magnetic properties of the ferrite nanoparticles are studied by X-ray diffraction (XRD), transmission electron microscopy (TEM), high solution transmission electron microscopy (HRTEM), energy-dispersive spectrometer (EDS), Fourier transform spectroscopy (FTIR), Raman spectra and vibrating sample magnetometry (VSM). The results indicate that the as-synthesized samples have the pure spinel phase, uniform crystallite size and narrow particle size distribution. Meanwhile, the RE3+ substitution leads to the decrease in the particle size, magnetization and coercivity of the CoFe2O4 ferrite. Notably, it demonstrates that the RE3+ doping can apparently enhance the adsorption capacity for Congo red (CR) onto ferrite nanoparticles. Adsorption equilibrium studies show that adsorption of CR follows the Langmuir model. The monolayer adsorption capacities of CoFe1.9Sm0.1O4 and CoFe1.9Ho0.1O4 are 178.6 and 158.0 mg/g, respectively. The adsorption kinetics can be described by the pseudo-second-order model.  相似文献   

7.
Synthesis of a new magnetoelectric [(1?x)(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3xCoFe2O4] (weight fraction x=0, 0.1, 0.2, 0.3, 0.4, 0.5 and 1) ceramic particulate composites with its structural characterization and magneto‐electric properties have been reported here in this study. Lead free piezoelectric (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 (BCZT) and ferrimagnetic CoFe2O4 (CFO) were synthesized using sol‐gel and combustion methods respectively. (1?x)BCZT‐xCFO magnetoelectric composites were then synthesized by mixing of the calcined individual ferroic phases with required weight fractions. Powder X‐ray diffraction studies indicate the coexistence of BCZT and CFO phases in the composites sintered at 1300°C. 0.5BCZT‐0.5CFO composite showed high strain sensitivity (dλ/dH) of 52×10?9 Oe?1, which is comparable to that of pure CFO (50×10?9 Oe?1). A high piezoelectric voltage constant (g33) of 8×10?3 V m/N was measured for 0.8BCZT‐0.2CFO sample. All the composites showed magnetoelectric effect and a high magnetoelectric coupling coefficient (αME) of 6.85 mV/cm Oe was measured for 0.5BCZT‐0.5CFO composite at 1 kHz and a large ME coefficient of 115 mV/cm Oe at its resonance frequency. The effect of microstructure on the magnetoelectric properties of [(1?x)BCZT‐(x)CFO] composites has been studied and reported here as a function of its piezoelectric (BCZT)/ferrite (CoFe2O4) content.  相似文献   

8.
In the present study, synthesis of different rare earth (RE) doped cobalt ferrite nanoparticles was done via facile sol-gel auto-combustion method using four different RE metal ions: Eu, Gd, Dy and Nd. The RE substituted cobalt ferrite nanoparticles were then characterized using FT-IR, powder XRD, HR-TEM, SAED, EDX, VSM and DRS techniques. From the characterization results, a significant variation in the structural, magnetic and optical properties of pure cobalt ferrite was observed with the introduction of different RE metal ions. This change in the properties was emerged due to the distortion of the ferrite crystal lattice due to replacement of smaller ionic radii Fe3+ ions with the comparatively larger ionic radii RE3+ metal ions. The catalytic activity of the fabricated RE doped cobalt ferrite nanoparticles was studied for the photo-Fenton degradation of cationic and anionic dyes. Under visible light irradiation, the as prepared RE doped nanoparticles exhibited great enhancement in the photo-Fenton degradation of dye molecules as compared to pure cobalt ferrite nanoparticles. The enhancement in the degradation rate was ascribed to the generation of defects in the crystal lattice, lower crystallite size and reduced band gap energy values which facilitated the facile transfer of photo-generated holes and electrons. Best catalytic results were obtained for CoNd0.08Fe1.92O4 for SO dye (k?=?2.23?×?10?1 min?1) which were found to be around 9 times higher than the pure cobalt ferrite nanoparticles (k?=?0.23?×?10?1 min?1).  相似文献   

9.
Yan-Qiu Chu 《Electrochimica acta》2004,49(27):4915-4921
Spinel cobalt ferrite (CoFe2O4) thin films have been fabricated by 355 nm reactive pulsed laser deposition on stainless steel substrates. XRD and SEM analyses showed that the CoFe2O4 films exhibited a polycrystalline structure and were composed of nanoparticles with an average size of 80 nm. At 1C rate, the initial irreversible capacity of polycrystalline CoFe2O4 film electrode cycled between 0.01 and 3.0 V reached 1280 mAh/g. After 20 cycles, the reversible discharge capacities decreased and sustained about 610 mAh/g. The diffusion coefficient of Li ion for CoFe2O4 films was determined by ac impedance method, and the average value was estimated to be 1.1 × 10−13 cm2/S. Based on ex situ XRD, SEM and XPS data, the electrochemical mechanism of CoFe2O4 film with lithium upon cycling was proposed. During the first discharge, the amorphization process of CoFe2O4 film electrode is accompanied with the reduction of Co2+ and Fe3+ into metal Co and Fe, respectively, and then the reversible oxidation/reduction processes of Co, Fe and Li2O take place in the subsequent charge/discharge cycles.  相似文献   

10.
The possibility of synthesizing the nanosized CoFe2O4 particles in organic solvents, such as glycerol and diphenyl oxide, at 250°C and atmospheric pressure under conditions of distillation of the formed water was studied. In the case of glycerol, we obtained the adduct of the latter with cobalt ferrite. The reaction in diphenyl oxide resulted in the formation of ferrite particles sized 8–10 nm.  相似文献   

11.
《Ceramics International》2017,43(2):2113-2122
The influence of the CoFe2O4 nanoparticles concentration in silica matrix on the structural and magnetic properties of xCoFe2O4/(100−x)SiO2 nanocomposites with x=10, 30, 50, 70 and 90 was studied. Magnetic CoFe2O4 nanoparticles dispersed in silica matrix was obtained by sol-gel method, followed by annealing at 1100 °C. The X-ray diffraction pattern and FT-IR spectra revealed the single spinel ferrite structure for all samples. The FT-IR spectra also suggested the formation of the amorphous silica matrix. The results showed that the increase of cobalt ferrite concentration (x) in the silica matrix leads to high crystallinity, specific surface area and particle size. The magnetic CoFe2O4 nanoparticles have spherical shapes and size in the 6–35 nm range. The Mössbauer measurements were fitted with two Zeeman sextets, indicating that all the samples were completely magnetically ordered. The vibrating sample magnetometer studies showed that the saturation magnetization (Ms) and coercivity (Hc) of the CoFe2O4 nanocrystals embedded in silica matrix possessed a linear relationship with the mean crystallite size. Also, the saturation magnetization of the studied nanocomposites increases with the increase of cobalt ferrite concentration (x) in the silica matrix.  相似文献   

12.
The paper presents the influence of diol (1,2-ethanediol, 1,2-propanediol, 1,3-propanediol and 1,4-butanediol) on the formation of magnetic crystalline cobalt ferrite embedded in polyvinyl alcohol-silica hybrid matrix at 200?°C. Formation of crystalline oxides (CoFe2O4, Co3O4 and Co2SiO4) was studied by X-ray diffraction and Fourier transformed infrared spectroscopy. The effect of annealing temperature and diol chain length on the cobalt ferrite nanocrystallites size was investigated. Using transmission electron microscopy, the size and shape of particles obtained at 200?°C were recorded and compared to those obtained by annealing at 500, 800 and 1100?°C. The saturation magnetization (Ms) and coercive field were calculated from the magnetic hysteresis loops of nanocomposites. The Ms was influenced by the particle size and crystallinity only for nanocomposites annealed at 800 and 1100?°C, when the magnetic domains started to form and to be larger than the critical particle size. The diols used in the synthesis influence both the oxidic phase formation and its properties.  相似文献   

13.
I-Han Chen  Chuh-Yung Chen 《Carbon》2010,48(3):604-9784
An electrospinning process was used to fabricate cobalt ferrite (CoFe2O4)-embedded polyacrylonitrile (PAN) nanofibers. Oleic acid-modified CoFe2O4 nanoparticles were dispersed in the PAN before spinning. The surface morphologies and structures of the nanofibers were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM and TEM observation showed that the average diameter of the CoFe2O4/PAN nanofibers was 110 nm, and the magnetic CoFe2O4 nanoparticles were embedded in the PAN nanofibers. X-ray photoelectron spectroscopy was used to characterize the CoFe2O4/PAN and CoFe2O4/carbon nanofibers. Fiber magnetic properties were measured by vibrating sample magnetometry, showing that the saturation magnetization of the CoFe2O4/PAN nanofibers was 45 emu/g and that the fibers demonstrated superparamagnetic behavior.  相似文献   

14.
A simple, soft, and fast microwave-assisted hydrothermal method was used for the preparation of nanocrystalline cobalt ferrite powders from commercially-available Fe(NO3)3?9H2O, Co(NO3)2?6H2O, ammonium hydroxide, and tetrapropylammonium hydroxide (TPAH). The synthesis was conducted in a sealed-vessel microwave reactor specifically designed for synthetic applications, and the resulting products were characterized by XRD, FE-SEM, TEM, and HR-TEM. After a systematic study of the influence of the microwave variables (temperature, reaction time and nature of the bases), highly crystalline CoFe2O4 nanoparticles with a high uniformity in morphology and size, were directly obtained by heating at 130?°C for 20?min using the base TPAH. Dense ceramics of cobalt ferrite were prepared by non-conventional, microwave sintering of synthesized nanopowders at temperatures of 850–900?°C. The magnetic properties of both the nanopowders and the sintered specimens were determined in order to establish their feasibility as a permanent magnet.  相似文献   

15.
In the present work, we reported a facile synthesis of cobalt ferrite (CoFe2O4) nanoparticles in the presence of L-cysteine (Lys). The morphology and size of samples were characterized by SEM and TEM. The successful coating of Lys on the surface of CoFe2O4 was confirmed by XRD, XPS and TGA. The investigation of magnetic properties showed that both bare CoFe2O4 and Lys-coated CoFe2O4 nanoparticles exhibited room-temperature superparamagnetic behavior. The results of MTT experiments revealed insignificant cytotoxicity of Lys-coated CoFe2O4 nanoparticles even after 24?h incubation. More importantly, Lys-coated CoFe2O4 nanoparticles displayed an excellent drug loading capacity and a pH-sensitive drug release behavior. In summary, the prepared Lys-coated CoFe2O4 nanoparticles demonstrated a promising application potential in controlled drug delivery.  相似文献   

16.
(CoFe2O4)X(SiO2-PVA)100-X (X = 5, 25, 50, 75 and 95%) nanocomposites were prepared via sol-gel route and annealed at 700 and 1100 °C. The influence of CoFe2O4 content on the structure, morphology and magnetic properties of nanocomposites was studied. X-ray diffraction patterns, Mössbauer and Fourier transform infrared spectra revealed the formation of CoFe2O4 as unique magnetic phase. The crystallinity degree increases with the CoFe2O4 content and the annealing temperature. Transmission electron microscopy images revealed the spherical shape of the obtained nanocomposites. Mössbauer spectra exhibit typical magnetic sextets, allowing the calculation of the cations distribution among tetrahedral and octahedral sites and the stoichiometry of CoFe2O4. A strong correlation between the particle morphology and the magnetic properties of nanocomposites was found. The highest saturation magnetization was identified for (CoFe2O4)95(SiO2-PVA)5 nanocomposite.  相似文献   

17.
A multifunctional fluorescent probe BHN-Fe3O4@SiO2 nanostructure for Fe3+ was designed and developed. It has a good selective response to Fe3+ with fluorescence quenching and can be recycled using an external magnetic field. With adding EDTA (2.5?×?10?5 M) to the consequent product Fe3+-BHN-Fe3O4@SiO2, Fe3+ can be removed from the complex, and its fluorescence probing ability recovers, which means that this constituted on-off type fluorescence probe could be reversed and reused. At the same time, the probe has been successfully applied for quantitatively detecting Fe3+ in a linear mode with a low limit of detection 1.25?×?10?8 M. Furthermore, the BHN-Fe3O4@SiO2 nanostructure probe is successfully used to detect Fe3+ in living HeLa cells, which shows its great potential in bioimaging detection.  相似文献   

18.
Abstract

Cobalt ferrite (CoFe2O4) powders synthesised by sol–gel techniques were incorporated into natural rubber (NR) and polyurethane (PU) by two-roll milling at different loadings from 0 to 45 phr. In either NR or PU composites, the magnetisations were proportional to the CoFe2O4 loading, but the coercive field remained rather insensitive to the loading. The frequency response from 1 MHz to 1 GHz revealed that the real part of the magnetic permeability increased significantly only in the case of 45 phr CoFe2O4, while the imaginary part was modest in both NR and PU composites. In contrast, the electrical permittivity of CoFe2O4–PU was larger than that of CoFe2O4–NR composites, and both parts at 100 MHz had linear variations with the loading, in agreement with Wagner’s equation.  相似文献   

19.
An easy method to synthesize a strongly coupled cobalt ferrite/carbon nanotube (CoFe2O4/CNT) composite with oxygen bridges between CoFe2O4 and reduced carbon nanotubes (CNTs) by calcining the precursor material was reported. The precursor was prepared by an electrostatic self-assembly of the exfoliated Co(II)Fe(II)Fe(III)-layered double hydroxide (CoFeFe-LDH) nanosheets and acid treated CNTs. The deoxygenation effect of ferrous ion (Fe2+) in CoFeFe-LDH nanosheets on the oxygen-containing groups of acid treated CNTs was investigated by X-ray photoelectron spectroscopy (XPS) measurement. After thermal conversion, the obtained CoFe2O4 was bonded to the reduced CNTs through Metal–O–C (oxygen bridge), which was characterized by XPS, Fourier transform infrared spectroscopy, and Raman spectroscopy. When applied as an anode for lithium-ion battery, the CoFe2O4/CNT composite exhibited a low resistance of charge transfer and Li-ion diffusion, good cycle performance, and high rate capability. At a lower current density of 0.15 A·g−1, a specific discharge capacity of 910 mA·h·g−1 was achieved up to 50 cycles. When current density was increased to 8.8 A·g−1, the CoFe2O4/CNT composite still delivered 500 mA·h·g−1.  相似文献   

20.
《Ceramics International》2021,47(19):27201-27209
The Cobalt ferrite (CoFe2O4) and cobalt ferrite incorporated with Cu (Cu–CoFe2O4) and Mg (Mg–CoFe2O4) have been synthesized by wet chemical route. In fixed-bed reactor, the CoFe2O4, Cu–CoFe2O4 and Mg–CoFe2O4 were used as catalysts for direct cracking of methane at temperature of 800 °C and 20 mL/min of feed gas flow rate for hydrogen and nano-carbon production. Different characterizations techniques namely XRD, FESEM, XPS, Raman spectroscopy, TGA, BET for fresh and spent catalysts have been executed. The X-ray powder diffraction and Raman spectra confirmed that the fresh catalysts possess a cubic spinel crystal structure. The FESEM images for spent catalysts displayed that filamentous carbons were not formed over catalysts surfaces except a few amount was observed over the spent CoFe2O4 catalyst. XPS results confirmed the purity of the synthesized catalysts and qualitatively evaluate the cation distribution between the tetrahedral and octahedral sites from Co 2p3/2 and Fe 2p3/2 spectra. BET surface area revealed no significant effects in surface area and pore size of CoFe2O4 catalyst by incorporation of Mg and Cu metals. Activity studies showed that incorporation Mg metal on CoFe2O4 improved methane conversion up to 40.03% and hydrogen formation rate of 79.90 mol H2 g−1 min−1 as compared to 31.61% and 66 mol H2 g−1 min−1 for CoFe2O4 catalyst. Whilst, Cu metal incorporation in CoFe2O4 catalyst led to decline the catalyst performance. Structure activity relationship was described in details.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号