首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Polymer Composites》2017,38(7):1371-1377
Keratins are the major structural fibrous proteins of hair, feathers, wool, and nail. Because keratin is protein based, cheap, and biocompatible, it has found applications from tissue engineering to textile industry. Simultaneous UV‐reactive electrospinning technique is used to fabricate nanofiber scaffolds with 4‐vinyl benzene boronic acid–hydroxyapatite/poly(vinyl alcohol) composite containing different amounts of keratin. Human hair as keratin supports the scaffolds for cell culture applications in our study. Our aim was to obtain nanofiber scaffolds which were designed to be nontoxic. The structure and the morphology of electrospun membranes were investigated by scanning electron microscopy and Fourier transform infrared spectroscopy technique. For the cell culture applications, endothelium (ECV 304) and sarcoma osteogenic (SAOS) cells were seeded on the electrospun fibrous scaffolds. Nanofiber scaffolds were found to have an average diameter of 350 ± 20 nm. These scaffolds provided a medium for cells to grow. POLYM. COMPOS., 38:1371–1377, 2017. © 2015 Society of Plastics Engineers  相似文献   

2.
Electrospun scaffolds can find numerous applications, including biomedical; for example, tissue engineering. Poly-L-lactic acid is considered suitable for these applications, but its low-thermal stability and its poor mechanical properties limit this polymer use. The aim of this work is to obtain a modulation of the final scaffolds characteristics such as fibers dimension, wettability, elasticity, and resistance to rupture through the choice of the polymers to be electrospun. Different electrospun scaffolds containing gelatin, Poly-DL-lactic acid, different percentages of cellulose nanocrystals and an elastin peptide have been produced. Thermal stability, physical structure, and its mechanical behavior have been studied. Results suggest that the electrospun scaffolds show better thermal and mechanical properties than bulk materials; that is, the scaffolds with the best hydrophilic and thermomechanical properties are the samples containing 3% (wt/wt) of CNCs and elastin peptide.  相似文献   

3.
The objective of this work is generation of propolis/polyvinyl alcohol (PVA) scaffold by electrospinning for 3D cell culture. Here, PVA used as co-spinning agent since propolis alone cannot be easily processed by electrospinning methodology. Propolis takes charge in maximizing biological aspect of scaffold to facilitate cell attachment and proliferation. Morphological analysis showed size of the electrospun nanofibers varied between 172–523 nm and 345–687 nm in diameter, for non-crosslinked and crosslinked scaffolds, respectively. Incorporation of propolis resulted in desired surface properties of hybrid matrix, where hybrid scaffolds highly favored protein adsorption. To examine cell compatibility, NIH-3T3 and HeLa cells were seeded on propolis/PVA hybrid scaffold. Results confirmed that integration of propolis supported cell adhesion and cell proliferation. Also, results indicated electrospun propolis/PVA hybrid scaffold provide suitable microenvironment for cell culturing. Therefore, developed hybrid scaffold could be considered as potential candidate for 3D cell culture and tissue engineering.  相似文献   

4.
《Ceramics International》2022,48(16):22647-22663
Calcium phosphates (apatites) are considered as a research frontier for bone regeneration applications by virtue of similarity to the mineral constituent of bone, suitable biocompatibility and remarkable osteogenesis ability. In this regard, the biodegradability and mechanical properties of monophasic apatites, typically hydroxyapatite (HA) and tricalcium phosphate (TCP), are imperfect and do not fulfill some requirements. To overcome these drawbacks, 3D porous HA/TCP composite scaffolds prepared by conventional and more recently, 3D printing techniques have shown to be promising since their bioperformance is adjustable by the HA/TCP ratio and pores. Despite the publication of several reviews on either 3D porous scaffolds or biphasic calcium phosphates (BCPs), no review paper has to our knowledge focused on 3D porous BCP scaffolds. This paper comprehensively reviews the production methods, properties, applications and modification approaches of 3D porous HA/TCP composite scaffolds for the first time. In addition, new insights are introduced towards developing HA/TCP scaffolds with more impressive bioperformance for further tissue engineering applications, including those with different interior and exterior frameworks, patient-specific specifications and drugs (or other biological factors) loading.  相似文献   

5.
Bone-limited capacity to fully repair large defects requires the development of new implants. In this context, new approaches have been used to promote bone regeneration and also to avoid the side effects associated with the therapeutics currently used in the clinic. Herein, 3D tricalcium phosphate/alginic acid scaffolds were produced and then coated with an electrospun mesh loaded with two different antibacterial agents, silver nanoparticles, and salicylic acid. The obtained results showed that the produced scaffolds have suitable mechanical properties, swelling, biodegradation, biomineralization activity, enhanced cellular adhesion/proliferation and bactericidal activity, and features essential for bone regeneration.  相似文献   

6.
3D aligned electrospun fibers hold a promising potential in a wide range of biomedical areas, including biosensors, controlled drug release, tissue engineering, etc. Thus, a cost‐effective and easy way to scale‐up fabrication for 3D aligned nanofibers is highly desired. Herein, a novel yet facile preparation process of 3D aligned nanofibers (3D AFs) by an improved electrospinning technique is reported. The obtained 3D AFs show enhanced controllability on morphology and fiber density, and thus facilitate adhesion and growth of human mesenchymal stem cells within their 3D nanofiber microarchitectures, leading to an excellent in vitro biocompatibility. Moreover, the 3D AFs with aligned morphology can enhance the neuron activities and induce directional cell growth along the direction of nanofiber orientation, thereby providing an excellent cue for the anchorage and migration dependent neurons. Combined with controllable morphology and structure, it is anticipated that this finding can lead to great applications of electrospun fibers in nerve tissue engineering, diagnostics, and other biomedical fields.

  相似文献   


7.
In this work nanofibrous 3D scaffolds of bioactive glasses (58S, 60%SiO2–36%CaO–4%P2O5 in mol and 63S, 65%SiO2–31%CaO–4%P2O5 in mol) were produced by a one-step solution blow spinning (SBS) process. A green synthesis route was used with water as solvent and PVA (polyvinyl alcohol), 8 wt%, as a spinning agent. The physical properties of the scaffolds were studied, and their bioactivity assessed using simulated body fluid (SBF) and cell viability evaluated with MC3T3-E1 cells. After immersion in SBF, hydroxyapatite formed on the surface of the fibers within 12 h in both compositions. Pre-osteoblastic cells MC3T3-E1 were seeded on nanofiber surfaces and the bioactive glass scaffolds displayed enhanced cell number, protein synthesis and differentiation levels of alkaline phosphatase activity consistent with cytocompatibility. Such novel biomaterials have high potential to be used as scaffolds in tissue engineering for bone regeneration.  相似文献   

8.
In the past few years, biomaterials technologies together with significant efforts on developing biology have revolutionized the process of engineered materials. Three dimensional (3D) in vitro technology aims to develop set of tools that are simple, inexpensive, portable and robust that could be commercialized and used in various fields of biomedical sciences such as drug discovery, diagnostic tools, and therapeutic approaches in regenerative medicine. The proliferation of cells in the 3D scaffold needs an oxygen and nutrition supply. 3D scaffold materials should provide such an environment for cells living in close proximity. 3D scaffolds that are able to regenerate or restore tissue and/or organs have begun to revolutionize medicine and biomedical science. Scaffolds have been used to support and promote the regeneration of tissues. Different processing techniques have been developed to design and fabricate three dimensional scaffolds for tissue engineering implants. Throughout the chapters we discuss in this review, we inform the reader about the potential applications of different 3D in vitro systems that can be applied for fabricating a wider range of novel biomaterials for use in tissue engineering.  相似文献   

9.
Functional gradient scaffolds play an important role in osteochondral tissue engineering because they can meet the essential requirement for a gradual transition of both physical and chemical properties in osteochondral tissue regeneration. There is a requirement for 3D composite osteochondral regeneration scaffolds with multiscale structures that are capable of controlling release of multiple biomolecules. To this end, this article describes a 3D bioprinting platform integrated forming system designed to produce various drug‐loaded scaffolds. A novel scaffold was fabricated by the self‐developed 3D bioprinting platform combining extrusion deposition with multi‐nozzle electrospinning. For temporally controlled release of gentamycin sulfate (GS) and desferoxamine (DFO), blend electrospun GS/polyvinyl alcohol (PVA) and coaxial electrospun core (PVA‐DFO)/shell (polycaprolactone; PCL) fibers were deposited in the scaffold. After a 25‐day time‐lapse release study in vitro, results showed GS released faster than DFO during the early stages and sustained release of DFO for long periods. For spatially controlled release of DFO, the vertically gradient gelatin/sodium alginate (SA) scaffolds presented to enable the release amount of DFO in a gradient mode. The experiment and test results demonstrate the validity of the 3D bioprinting platform integrated forming system and the excellent properties of such scaffolds for performing multidrug spatiotemporal release. POLYM. ENG. SCI., 56:170–177, 2016. © 2015 Society of Plastics Engineers  相似文献   

10.
In this study, we prepared photo-crosslinked modified HAP (hydroxy apatite)/polyvinyl alcohol (PVA) composite nanofiber scaffold for cell growth applications. HAP was synthesized and then modified with 4-vinylbenzene boronic acid (VBBA) to obtain 4-VBBA-HAP. By means of the simultaneous UV electrospinning technique 4-VBBA-HAP/PVA composite was obtained. The structure and morphology of electrospun membranes were investigated by scanning electron microscopy) and Fourier transform infrared spectroscopy technique. Nanofibers were treated with collagen solution via the spraying method. For the cell culture applications ECV304 and SAOS cells were seeded on the chosen electrospun fibrous scaffolds.  相似文献   

11.
Generally, polymer solution or sol–gel is used to produce electrospun nanofibers via the electrospinning technique. In the utilized sol–gel, the metallic precursor should be soluble in a proper solvent since it has to hydrolyze and polycondensate in the final solution; this strategy straitens the applications of the electrospinning process and limits the category of the electrospinnable materials. In this study, we are discussing electrospinning of a colloidal solution process as an alternative strategy. We have utilized many solid nanopowders and different polymers as well. All the examined colloids have been successfully electrospun. According to the SEM and FE SEM analyses for the obtained nanofiber mats, the polymeric nanofibers could imprison the small nanoparticles; however, the big size ones were observed attaching the nanofiber mats. Successfully, the proposed strategy could be exploited to prepare polymeric nanofibers incorporating metal nanoparticles which might have interesting properties compared with the pristine. For instance, PCL/Ti nanofiber mats exhibited good bioactivity compared with pristine PCL. The proposed strategy can be considered as an innovated methodology to prepare a new class of the electrospun nanofiber mats which cannot be obtained by the conventional electrospinning technique.  相似文献   

12.
The development of tissue engineering in the field of orthopedic surgery is booming. Two fields of research in particular have emerged: approaches for tailoring the surface properties of implantable materials with osteoinductive factors as well as evaluation of the response of osteogenic cells to these fabricated implanted materials (hybrid material). In the present study, we chemically grafted insulin onto the surface of hydroxyapatite nanorods (nHA). The insulin-grafted nHAs (nHA-I) were dispersed into poly(lactide-co-glycolide) (PLGA) polymer solution, which was electrospun to prepare PLGA/nHA-I composite nanofiber scaffolds. The morphology of the electrospun nanofiber scaffolds was assessed by field emission scanning electron microscopy (FESEM). After extensive characterization of the PLGA/nHA-I and PLGA/nHA composite nanofiber scaffolds by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectrometry (EDS), and transmission electron microscopy (TEM), the PLGA/nHA-I and PLGA/nHA (used as control) composite nanofiber scaffolds were subjected to cell studies. The results obtained from cell adhesion, alizarin red staining, and Von Kossa assay suggested that the PLGA/nHA-I composite nanofiber scaffold has enhanced osteoblastic cell growth, as more cells were proliferated and differentiated. The fact that insulin enhanced osteoblastic cell proliferation will open new possibilities for the development of artificial scaffolds for bone tissue regeneration.  相似文献   

13.
This work addresses the preparation of 3D porous scaffolds of blends of chitosan and poly(l-lactic acid), CHT and PLLA, using supercritical fluid technology. Supercritical assisted phase-inversion was used to prepare scaffolds for tissue engineering purposes. The physicochemical and biological properties of chitosan make it an excellent material for the preparation of drug delivery systems and for the development of new biomedical applications in many fields from skin to bone or cartilage regeneration. On the other hand, PLLA is a synthetic biodegradable polymer widely used for biomedical applications. Supercritical assisted phase-inversion experiments were carried out in samples with different polymer ratios and different polymer solution concentrations. The effect of CHT:PLLA ratio and polymer concentration and on the morphology and topography of the scaffolds was assessed by SEM and Micro-CT. Infra-red spectroscopic imaging analysis of the scaffolds allowed a better understanding on the distribution of the two polymers within the matrix. This work demonstrates that supercritical fluid technology constitutes a new processing technology, clean and environmentally friendly for the preparation of scaffolds for tissue engineering using these materials.  相似文献   

14.
This work addresses the preparation of 3D porous scaffolds of blends of chitosan and poly(l-lactic acid), CHT and PLLA, using supercritical fluid technology. Supercritical assisted phase-inversion was used to prepare scaffolds for tissue engineering purposes. The physicochemical and biological properties of chitosan make it an excellent material for the preparation of drug delivery systems and for the development of new biomedical applications in many fields from skin to bone or cartilage regeneration. On the other hand, PLLA is a synthetic biodegradable polymer widely used for biomedical applications. Supercritical assisted phase-inversion experiments were carried out in samples with different polymer ratios and different polymer solution concentrations. The effect of CHT:PLLA ratio and polymer concentration and on the morphology and topography of the scaffolds was assessed by SEM and Micro-CT. Infra-red spectroscopic imaging analysis of the scaffolds allowed a better understanding on the distribution of the two polymers within the matrix. This work demonstrates that supercritical fluid technology constitutes a new processing technology, clean and environmentally friendly for the preparation of scaffolds for tissue engineering using these materials.  相似文献   

15.
Novel adsorbents with a simple preparation process and large capacity for removing highly toxic and nondegradable heavy metals from water have drawn the attention of researchers. Electrospun nanofiber membranes usually have the advantages of large specific surface areas and high porosity and allowing flexible control and easy functionalization. These membranes show remarkable application potential in the field of heavy metal wastewater treatment. In this paper, the electrospinning technologies, process types, and the structures and types of nanofibers that can be prepared are reviewed, and the relationships among process, structure and properties are discussed. On one hand, based on the different components of electrospun nanofibers, the use of organic, inorganic and organic−inorganic nanofiber membrane adsorbents in heavy metal wastewater treatment are introduced, and their advantages and future development are summarized and prospected. On the other hand, based on the microstructure and overall structure of the nanofiber membrane, the recent progresses of electrospun functional membranes for heavy metal removal are reviewed, and the advantages of different structures for applications are concluded. Overall, this study lays the foundation for future research aiming to provide more novel structured adsorbents.  相似文献   

16.
The paper discusses the extent to the scale of the electrospun fiber membrane. Literatures show that two distinct methods of raising electrospun nanofiber production can be employed via spinning from a setup of multiple nozzles arranged side by side or from an expanse of polymer solution (needleless electrospinning). Both of these methods are thoroughly explored by considering the variations available within either of their respective productivities. Their mechanisms are duly dealt with by looking at principles and parameters behind the process performances and an analysis of the strategies devised to deal with the shortcomings and ensure process feasibility is given. It has to be noted that most of the available work on electrospinning and their applications is achieved via single needle electrospinning. In this review, a projection is taken to be accomplished whether the nanofiber production can be consistently raised to commercial levels at the exceptional application routes so far produced by the conventional electrospinning means.  相似文献   

17.
Exploiting the unique properties of three‐dimensional (3D) auxetic scaffolds in tissue engineering and regenerative medicine applications provides new impetus to these fields. Herein, the results on the fabrication and characterization of 3D auxetic scaffolds for tissue engineering applications are presented. The scaffolds are based on the well‐known re‐entrant hexagonal geometry (bowtie) and they are fabricated by multiphoton lithography using the organic?inorganic photopolymer SZ2080. In situ scanning electron microscopy–microindentations and nanoindention experiments are employed to characterize the photocurable resin SZ2080 and the scaffolds fabricated with it. Despite SZ2080 being a stiff material with a positive Poisson’s ratio, the scaffolds exhibit a negative Poisson’s ratio and high elasticity due to their architecture. Next, mouse fibroblasts are used to seed the scaffolds, showing that they can readily penetrate them and proliferate in them, adapting the scaffold shape to suit the cells’ requirements. Moreover, the scaffold architecture provides the cells with a predilection to specific directions, an imperative parameter for regenerative medicine in many cell‐based applications. This research paves the way for the utility of 3D auxetic metamaterials as the next‐generation adaptable scaffolds for tissue engineering.  相似文献   

18.
Considerable efforts have been devoted toward the development of electrospun scaffolds based on poly(ε‐caprolactone) (PCL) for bone tissue engineering. However, most of previous scaffolds have lacked the structural and mechanical strength to engineer bone tissue constructs with suitable biological functions. Here, we developed bioactive and relatively robust hybrid scaffolds composed of diopside nanopowder embedded PCL electrospun nanofibers. Incorporation of various concentrations of diopside nanopowder from 0 to 3 wt % within the PCL scaffolds notably improved tensile strength (eight‐fold) and elastic modulus (two‐fold). Moreover, the addition of diopside nanopowder significantly improved bioactivity and degradation rate compared to pure PCL scaffold which might be due to their superior hydrophilicity. We investigated the proliferation and spreading of SAOS‐II cells on electrospun scaffolds. Notably, electrospun PCL‐diopside scaffolds induced significantly enhanced cell proliferation and spreading. Overall, we concluded that PCL‐diopside scaffold could potentially be used to develop clinically relevant constructs for bone tissue engineering. However, the extended in vivo studies are essential to evaluate the role of PCL‐diopside fibrous scaffolds on the new bone growth and regeneration. Therefore, in vivo studies will be the subject of our future work. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44433.  相似文献   

19.
D. Hussain 《Polymer》2010,51(17):3989-220
Highly porous nonwovens composed of nanofibers and produced by electrospinning are key elements in a broad range in technical but also in Life Science areas. Applications for gas or fluid filtration, textile applications, carriers for catalysts and scaffolds for tissue engineering are selected examples. These applications require well defined nonwoven parameters such as in particular pore diameters, internal surfaces as well as permeation properties. Electrospinning, on the other hand, allows to control structural parameters such as fiber diameter, nonwoven architecture as well as in certain limits the total porosity. It is thus highly important to know as much as possible about the correlations between the structural parameters controlled by electrospinning and the parameters controlling the performance of the nonwovens composed of the electrospun nanofibers. In the present contribution we analyze these correlations for different types of electrospun nonwovens for a broad range of fiber diameters on an experimental scale The nonwoven considered are composed of polyacrylonitrile (PAN) and polyamide 6 (PA 6) fibers. Results are that pore diameters, specific surface area and permeation coefficients scale in a transparent way with fiber diameters. Finally we briefly compare these experimental results with corresponding predictions gained for ideal nonwovens predominantly from Monte Carlo simulations. The results suggest that one is able to design electrospun nanofiber based nonwovens with predetermined properties and functions in a highly controlled way.  相似文献   

20.
The behavior of electrospun polyvinyl alcohol (PVA) and polyethylene oxide (PEO) nanofibers embedded with urea is studied as a function of various process parameters. Our results show that three‐dimensional nanofiber networks can be obtained when high concentrations of urea in the solution are used during electrospinning. The nanofibers are characterized using both scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR). The stability of the nanofiber as a function of electric field has also been studied. The successful formation of three‐dimensional nanofiber networks can open new trends toward applications in fertilizers containing nanofibers in the nanoagricultural field. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39840.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号