首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Different loading of mesoporous molecular sieve SBA-15 was used to prepare polystyrene (PS)/SBA-15 composite materials via in-situ emulsion polymerization. The influence of SBA-15 silica on the styrene emulsion polymerization was studied regarding to the monomer conversion, particle size and particle size distribution, stability and viscosity of the resulting emulsion. The structure and properties of the composites were investigated by infrared spectroscopy (IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and gel permeation chromatography (GPC). In addition, the glass transition temperature (Tg), thermal mechanical property and thermal stability of the composite film were measured by differential scanning calorimeter (DSC), dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA), respectively. The results indicated that the composite emulsion showed high monomer conversion, thick viscosity, low coagulum, uniform particle size and broad size distribution. Molecular weight of the polymer decreased with the increase of mesoporous silica. SBA-15 silica was dispersed evenly in PS matrix at a loading of 5 %. The PS/SBA-15 composite material containing 10 % silica maintained a certain ordered structure. DMA results demonstrated that PS/SBA-15 composite exhibited greater storage modulus and high Tg compared to pure PS. The improved thermal stability and Tg of the composite were also confirmed by the TGA and DSC.  相似文献   

2.
α-Amylase was encapsulated in several mesoporous materials (folded sheet mesoporous silica (FSM), cubic mesoporous silica (KIT-6), and two-dimensional hexagonal mesoporous silica (SBA-15)) that differed morphologically in terms of particle shape, pore size, and pore structure. The encapsulation capacity and thermal stability of encapsulated α-amylase were examined. The amount of α-amylase encapsulated increased with increasing pore size in the following order: SBA-15 < KIT-6 < FSM. Nitrogen adsorption experiments were performed before and after α-amylase encapsulation in mesoporous silicas with pore sizes larger than the size of α-amylase, confirming that α-amylase was encapsulated in the pores. Among mesoporous silicas with similar pore sizes, FSM was found to have the highest capacity for α-amylase encapsulation both per weight and per surface area of silica. Furthermore, α-amylase encapsulated in FSM demonstrated high thermal stability at 90 °C relative to the thermal stability of free α-amylase or free α-amylase encapsulated in other mesoporous silicas. Zeta potential measurements showed that the FSM surface had an isoelectric point that was lower than that of other mesoporous silicas, and hydrophilicity measurements showed that its surface was more hydrophilic. The surface properties of FSM contributed to the high thermal stability of the α-amylase encapsulated within the pores.  相似文献   

3.
介孔分子筛SiW12/SBA-15催化合成柠檬酸三丁酯   总被引:1,自引:0,他引:1  
:将硅钨酸负载在纯硅介孔分子筛SBA-15的表面上,XRD结果表明负载型催化剂SiW12/SBA-15具有纯硅SBA-15的介孔结构.将该催化剂用于合成柠檬酸三丁酯的酯化反应.采用正交实验考察了反应温度、催化剂用量、酸醇摩尔比对柠檬酸转化率的影响,得出最佳反应条件为:反应温度120℃、催化剂用量为总物料质量的1.5%、酸醇摩尔比1:4.在此条件下反应4 h,柠檬酸转化率可达到91.5%,产物的纯度为99.3%.  相似文献   

4.
SiW_(12)/SBA-15介孔分子筛催化合成月桂酸乙酯   总被引:3,自引:0,他引:3  
用传统的水热合成法制备纯硅介孔分子筛SBA-15,将SiW12负载在SBA-15上.采用X射线衍射(XRD)、红外光谱(IR)对不同负载量的催化剂进行了表征.表征结果表明,催化剂SiW12/SBA-15仍具有纯硅SBA-15的介孔结构,SiW12的Keggin结构保持完整.该催化剂用于月桂酸与乙醇的酯化反应,重点考察了硅钨酸的负载量、反应温度、酸醇比、催化剂用量等因素对酯化反应性能的影响.得到最佳反应条件为:硅钨酸的负载量为25%,反应温度90 ℃,酸醇比1:2.5,催化剂用量为月桂酸质量的1%,反应时间4 h.催化剂再生实验结果认为,SiW12/SBA-15介孔分子筛具有良好的再生性能和稳定性.  相似文献   

5.
The two-solvent method was employed to prepare Pd encapsulated in mesoporous silica (Pd/SBA-15). A 3.01 wt% Pd loading was achieved without the loss of pore ordering. Highly dispersed and uniform palladium nanoparticles could be detected using transmission electron microscopy confirming also the absence of large particles outside the mesopore silica. The catalytic activities of the Pd/SBA-15 nanocomposites were investigated in Heck coupling reactions with activated and non-activated aryl substrates. The Pd/SBA-15 nanocomposite exhibits excellent catalytic activities and reuse ability in air for the Heck carbon–carbon coupling reactions.  相似文献   

6.
有机氯硅烷修饰的介孔SBA-15及其疏水性   总被引:1,自引:0,他引:1  
李惠云  郭金福 《化学世界》2011,52(7):389-392
在非极性溶剂(甲苯)中,用三甲基氯硅烷和苯基二甲基氯硅烷对全硅介孔分子筛SBA-15进行了表面修饰.利用傅里叶变换红外光谱(FT IR)、X射线粉末衍射(XRD)和低温N2吸附-脱附等手段对样品进行了结构分析;并通过测定样品在水或正己烷饱和蒸汽中的吸附量,研究了它们的疏水性.结果表明,表面改性后的SBA-15仍保持完好...  相似文献   

7.
The preparation of chemisorbents based on tungsto- and molybdophosphoric acids supported on two types of synthetic mesoporous carbons and two types of mesoporous silica is described. Strong solid acids with good accessibility to acid sites may potentially be effective adsorbents for the removal of basic molecular impurities, such as amines, from ultrapure manufacturing environments. Prepared materials were characterised by scanning electron microscopy, nitrogen adsorption, Fourier-transform infrared spectroscopy, powder X-ray diffraction, and equilibrium ammonia uptake. Composites of SBA-15 with heteropolyacids were synthesised. It was shown that the inclusion of HPAs into SBA-15 results in the loss of long range order. Adsorbents based on the HPAs impregnated into the supports with the open-pore morphology (Novacarb and SBA-15) were found to be promising materials. A composite of tungstophosphoric acid with sol–gel SiO2 was found to have the highest ammonia uptake.  相似文献   

8.
SBA-15介观相形成过程的耗散粒子动力学模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
采用耗散粒子动力学方法(dissipative particle dynamics,DPD),以介孔分子筛SBA-15的合成原料P123/TEOS/H2O为研究体系,模拟了P123/TEOS超分子自组装行为,及剪切力作用下介孔分子筛SBA-15六角介观相的形成过程。结果表明:在水溶液中,P123与TEOS两相能够发生协同作用自组装形成超分子聚集体(胶束),该胶束由疏水的PPO球核、亲水的PEO球壳以及聚集包裹在P123外部的TEOS组成;引入稳恒剪切力后,P123/TEOS超分子聚集体则会逐渐转变成规整的六角结构,并最终形成SBA-15六角介观相,这与实际材料的TEM电镜图片相吻合。可以说,DPD模拟方法是一个研究有序介孔分子筛SBA-15形成机理的有效手段,可为实验合成提供介观层面上的重要信息。此外,还拓展了DPD模拟在超分子自组装介观尺度研究方面的新应用。  相似文献   

9.
Single-wall carbon nanotubes (SWCNTs) have been synthesized by supported-catalyst chemical vapor deposition (CCVD) using one-dimensional (1D) channels of mesoporous silica (SBA-15; mean channel diameter, 6.0 nm) functionalized with carboxyl groups where Co and Fe complexes are encapsulated. The synthesized SWCNTs have much larger diameters than the SWCNTs synthesized by conventional CCVD. Transmission electron microscope observations reveal that large-diameter SWCNTs (<4.2 nm) are grown in 1D channels of SBA-15. Large metal particles formed in the channels should play an important role in the growth of the SWCNTs with larger diameters.  相似文献   

10.
The two-solvent method was employed to prepare ZnO encapsulated in mesoporous silica (ZnO/SBA-15). The prepared ZnO/SBA-15 samples have been studied by X-ray diffraction, transmission electron microscope, X-ray photoelectron spectroscopy, nitrogen adsorption–desorption isotherm, and photoluminescence spectroscopy. The ZnO/SBA-15 nanocomposite has the ordered hexagonal mesostructure of SBA-15. ZnO clusters of a high loading are distributed in the channels of SBA-15. Photoluminescence spectra show the UV emission band around 368 nm, the violet emission around 420 nm, and the blue emission around 457 nm. The UV emission is attributed to band-edge emission of ZnO. The violet emission results from the oxygen vacancies on the ZnO–SiO2 interface traps. The blue emission is from the oxygen vacancies or interstitial zinc ions of ZnO. The UV emission and blue emission show a blue-shift phenomenon due to quantum-confinement-induced energy gap enhancement of ZnO clusters. The ZnO clusters encapsulated in SBA-15 can be used as light-emitting diodes and ultraviolet nanolasers.  相似文献   

11.
The mesoporous silica (or SBA-15) was loaded with azathioprine drug. Azathioprine drug was incorporated into mesoporous silica by post impregnation method to reduce its toxic effects by controlling the drug release property. The synthesized pure SBA-15 and SBA-15-azathioprine composite were characterized by UV–visible spectrophotometry, thermo-gravimetric analysis, small and large angle powder X-ray diffraction, field emission scanning electron microscopy, high resolution transmission electron microscopy, Fourier transform infrared spectroscopy and nitrogen adsorption–desorption analysis. The successful inclusion of azathioprine drug in host material SBA-15 was confirmed by the reduced surface area (114 m2/g) and pore diameter (6.5 nm) of the organic–inorganic composite material. The drug entrapment efficiency of 90.67 % and loading efficiency of 72.67 % was achieved. The azathioprine drug release process from the mesoporous silica to simulated gastric, intestinal and body fluid were examined and the controlled release effect of the azathioprine drug in all fluids were studied. The Korsmeyer–Peppas model fits well the drug release data with the non-Fickian diffusion model and zero order kinetics for produced mesoporous silica. The controlled drug release enhanced the bioavailability and reduces its repeated administration. Hence, the composite drug can reduce the toxicity and side effects of the azathioprine.  相似文献   

12.
采用溶胶-凝胶水热法,调控反应参数和反应工艺制备SBA-15介孔材料。通过扫描电镜、透射电镜、X射线衍射以及氮气吸附-脱附分析表征表明,在一定范围,随着表面活性剂浓度增加,介孔材料SBA-15形貌出现由球形、陀螺形到米粒状的变化,介观有序度提高。在反应物料P123与Si物质的量比为0.012时,介孔材料的物性常数如晶面间距、比表面积、孔体积和最可几孔径较小。采用静态陈化-水热法研究不同表面活性剂浓度对介孔材料形貌演变的影响,为有效调控SBA-15介孔材料形貌提供必要依据。  相似文献   

13.
SBA-15 mesoporous silica was modified with metal (Al, Ti, Cu, Fe) oxides by the molecular designed dispersion (MDD) method using acetylacetonate complexes of metals as precursors of the catalytically active components. The modified mesoporous silicas were characterized with respect to texture (BET), composition (EPMA), coordination and aggregation of transition metal species (UV–vis-DRS), reducibility of the deposited transition metals (TPRed) and surface acidity (FT-IR). Deposition of aluminium and titanium species on the SBA-15 surface significantly increased its acidity, mainly by generation of strong Lewis acid sites. Copper and iron deposited on the surface of pure SBA-15 were present nearly exclusively in the form of mononuclear cations. Deposition of Fe or Cu on the SBA-15 supports modified with alumina or titania resulted in a formation of significant amounts of oligomeric metal oxide clusters. The SBA-15 based samples have been found to be active and selective catalysts of the DeNOx process. The modification of the silica surface with titanium or aluminium prior to the deposition of iron or copper significantly improved the activity of the SBA-15 based catalysts.  相似文献   

14.
采用浸渍法将含有磺酸基的对甲苯磺酸负载在SBA-15表面上,合成含有一定酸性的固体酸催化剂TsOH-SBA-15。催化剂的制备条件为:对甲苯磺酸的浸渍浓度为0.5 mol/L,焙烧温度为300℃,焙烧时间为4 h。用XRD,IR,DTA/TGA,氮吸附-脱附等方法对改性后的样品进行表征。结果表明,改性后的SBA-15分子筛的结构未发生变化,仍具有有序孔道结构。TsOH-SBA-15催化剂对冰乙酸和正丁醇的酯化反应具有较高的活性,正交实验结果为:反应时间80 m in,n(冰乙酸)∶n(正丁醇)=1∶1.2,催化剂用量为冰乙酸质量的5%,此时酯化率可达到95%。  相似文献   

15.
An inorganic–organic hybrid fluorescence chemosensor (DA/SBA-15) was prepared by covalent immobilization of a dansylamide derivative into the channels of mesoporous silica material SBA-15 via (3-aminopropyl)triethoxysilane (APTES) groups. The primary hexagonally ordered mesoporous structure of SBA-15 was preserved after the grafting procedure. Fluorescence characterization shows that the obtained inorganic–organic hybrid composite is highly selective and sensitive to Hg2+ detection, suggesting the possibility for real-time qualitative or quantitative detection of Hg2+ and the convenience for potential application in toxicology and environmental science.  相似文献   

16.
Friedel-Crafts alkylation of benzene with linear chain olefin (C10-C14),which is an important reaction of synthetic detergent,was studied via different catalysts of aluminum impregnated silica molecular sieves.AlCl3 was immobilized on silica molecular sieves with different channel structures,hexagonal packing channels network (SBA-15,MCM-41),and disordered channel network (SiO2,SiO2-Gel) by impregnation.XRD and N2 adsorption-desorption isotherms confirmed that the specific mesoporous structures were maintained for order channel network catalyst after impregnation.Catalytic activities were investigated under different conditions.The influences of channel structure were discussed.The results showed that catalyst based on mesoporous like SBA-15 had the highest catalytic activities and 2-LAB selectivity compared with other catalysts in this work.The highest 2-LAB selectivity was nearly 50% when 1-dodecene conversion was nearly 100%.At low 1-dodecene conversion or higher benzene/1-dodecene molar ratio,2-LAB selectivity was nearly 60%.  相似文献   

17.
介孔分子筛SBA-15的研究进展   总被引:1,自引:0,他引:1  
自从介孔分子筛SBA - 15首次合成出来 ,成为众多研究领域的一个研究热点。文章综述了介孔分子筛SBA -15的合成及机理 ,影响孔径尺寸的因素及研究应用进展 ,介孔分子筛SBA - 15在催化、吸附和分离及纳米材料等领域具有广泛的应用前景。  相似文献   

18.
A route to synthesize porous materials with a bimodal macro/mesoscopic pore system has been investigated in this work. Polystyrene with sub-micrometer size was used as a template in the synthesis. The resulting mesoporous silica wall replicated inversely the morphology of polystyrene template and had highly ordered three-dimensional arrays of macro pores. Large and moldable meso/macro porous silica monoliths could be obtained in centimeter scale by using monodispersed polystyrene beads and PEO-PPO-PEO/SBA-15 sol solutions. These bimodal structured porous silicates have been used as supports for asymmetric kinetic resolution of racemic epoxides to synthesize optically pure epoxide.  相似文献   

19.
The combination of Br?nsted acidity with metallic functionality in a mesoporous catalyst offers a potential pathway for the conversion of cellulose into sugar alcohols that may be used as a sustainable source of renewable biorefinery feedstock. Supported Ru catalysts were prepared by evaporative deposition on various ordered mesoporous silicas (SBA-15) with different functionalities and characterized using multiple experimental techniques. The catalytic performance of the supported Ru catalysts was compared to that of the corresponding supports and of Ru/C. We studied the effects of functional group loading, reaction time and temperature on the activity and products yield of the bifunctional catalysts by monitoring the cellulose conversion and the production of sugars and sugar alcohols in a high-pressure batch reactor. Sorbitol is the main product obtained by the hydrolysis of cellulose to glucose followed by the corresponding reduction. Secondary products include sugars, ethylene glycol and glycerol. The activity of mesoporous silica catalysts increases with an increase in acid loading and the addition of Ru allows control of the selectivity towards sugar alcohols. Ruthenium supported on arenesulfonic acid-functionalized mesoporous silica (Ru/SBA-15S) displays the best catalytic performance. Ru/SBA-15S is more hydrothermally stable than SBA-15, but loses a significant fraction of its surface area, crystallinity, acidity and activity after prolonged exposure to water at 483?K.  相似文献   

20.
The pore surface of mesoporous silica SBA-15 was coated with 2,3-dihydroxynaphthalene (DN) through a dehydration reaction between the surface silanol groups in SBA-15 and the hydroxyl groups of the DN molecules. By the carbonization of DN in the SBA-15 pores, the pore surface was uniformly covered with an extremely thin carbon layer, which comprised only 1-2 graphene sheets. The resulting carbon-coated SBA-15 still possessed the characteristics of the original SBA-15—large surface area and pore volume, long-range ordered structure, and sharp mesopore size distribution. In addition, the carbon-coated SBA-15 showed marked hydrophobicity and high electrical conductivity, both of which are not intrinsic properties of SBA-15. The appearance of these features can be explained from the almost perfect carbon coating on the pore surface. Newly developed graphene coating technique can donate characteristic carbon properties to mesoporous silica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号