首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Human thioredoxin (hTrx) is a cellular redox-active protein that catalyzes dithiol/disulfide exchange reactions, thus controlling multiple biological functions, including cell growth-promoting activity. Here we show that the expression of hTrx protein and messenger RNA was up-regulated by incubation with 17beta-estradiol (E2) in primary culture of stromal cells isolated from human endometrium. Maximal enhancement of hTrx protein and messenger RNA was observed after 6-12 h of incubation with 10-100 nM E2, and the enhancing effect was suppressed by tamoxifen, an estrogen antagonist. Release of hTrx into the culture medium was markedly augmented after 5-day exposure of E2 plus progesterone (P) accompanied by in vitro differentiation of endometrial stromal cells (decidualization). Immunocytochemical studies showed that hTrx was localized in the nucleus, nucleolus, and cytosol in the stromal cells. Strongly enhanced immunoreactivity for hTrx was observed in the E2-treated cells, whereas there was no apparent difference in the pattern of subcellular localization among the untreated and E2- and/or P-treated cells. Although 1-50 microg/ml recombinant hTrx alone did not promote endometrial stromal cell growth, epidermal growth factor-dependent mitogenesis was additively enhanced by hTrx. Our results indicate that hTrx modulates endometrial cell growth, acting as a comitogenic factor for epidermal growth factor, which is known to be a mediator of estrogen action. It is also suggested that hTrx is deeply involved in the hormonal control of the endometrium by E2 and P, playing a regulatory role in endometrial cell growth and differentiation.  相似文献   

3.
Understanding the factors which alter estrogen metabolism and activity in endometrial tissue is important because unopposed estrogen stimulation is an important risk factor in the development of endometrial carcinoma. The cyclic progression of the endometrium through proliferative and secretory phases is normally under the control of the ovarian hormones beta-estradiol (E2) and progesterone. One mechanism by which progesterone inhibits the activity of E2 in secretory endometrium is by elevating the degree of E2 sulfation, thereby reducing its ability to bind to the estrogen receptor and elicit a cellular response. Our laboratories have investigated the cytosolic sulfotransferases (STs) found in biopsies of both proliferative and secretory endometrium obtained from five normal pre-menopausal women who were not taking any drugs or steroids. Two of the human cytosolic STs were detected in human endometrial tissues. The phenol-sulfating form of phenol ST (P-PST) was found at varying levels in cytosol from both proliferative and secretory endometrium in all of the women studied but with no consistent correlation to the phase of the menstrual cycle. In contrast, estrogen ST (EST) was not detected in the proliferative endometrial cytosol of any of the women studied but was consistently found in all of the secretory endometrial cytosols. The presence and levels of these STs was confirmed by ST activity studies, immunoblot analysis and Northern blot analysis. These results indicate that the expression of EST in human endometrial tissues varies with the phase of the menstrual cycle and is most likely regulated by progesterone secreted from the ovaries.  相似文献   

4.
Telomerase activity is observed in most malignant tumors and germ cells, whereas normal somatic cells usually do not express it. Human endometrium is composed of glandular and stromal components and exhibits dramatic changes in proliferative activity during the menstrual cycle, which is exquisitely regulated by estrogen function. We previously reported that normal human endometrium expresses telomerase activity. However, it remains unclear which of the above components are the major sources of telomerase activity and how levels of telomerase activity are regulated over the menstrual cycle. Quantitative analysis of telomerase activity revealed that it changes dramatically over the course of the menstrual cycle and is strictly regulated in a menstrual-phase-dependent manner. Maximal activity equivalent to that in endometrial cancer was present in late proliferative phase, and minimal activity in late secretory phase. Postmenopausal endometrium and endometrium treated with anti-estrogen drugs exhibited decreased telomerase activity. Testing isolated epithelial glandular cells and stromal cells, we found that telomerase activity was localized to epithelial glandular cells. In situ RNA hybridization analysis also revealed epithelial-specific expression of human telomerase RNA. In vitro analysis of cultured epithelial cells demonstrated that telomerase activity is correlated with epithelial proliferation but not affected by estrogen treatment. These findings suggest that expression of telomerase activity is specific to epithelial cells and linked to cell proliferative status. The involvement of estrogen in telomerase regulation remains to be elucidated.  相似文献   

5.
Inhibin/activin alphaC/alphaN and betaA subunits were localized immunohistochemically in the human endometrium throughout the menstrual cycle using an affinity-purified sheep polyclonal antibody raised against the alphaC/alphaN subunit and an affinity-purified rabbit polyclonal antibody raised against the betaA subunit. The betaB subunit was below the level of detection in all human endometrial samples tested. Immunoreactive inhibin alphaC/alphaN subunit was localized in the luminal epithelium, glandular epithelium, stromal tissues and vascular endothelium with no significant variation across the normal menstrual cycle. Immunoreactive betaA subunit, common to inhibin A and activins AA and AB was localized in the luminal and glandular epithelium and in migratory cells while the endometrial stromal cells, decidua, vascular smooth muscle and endothelium were devoid of immunoreactivity. A significant variation of immunoreactive betaA subunit was observed in glandular and luminal epithelium across the normal menstrual cycle. In proliferative endometrium, only a very low level of betaA immunostaining was seen in luminal and glandular epithelium, while the luminal epithelial staining increased significantly in the early secretory phase and remained relatively constant over the rest of the menstrual cycle. A progressive increase in betaA immunoreactivity was observed also in the glandular epithelium during the secretory phase reaching a maximum in the late secretory phases, and decreasing at menstruation. Co-localization studies on serial sections suggested that the migratory cells expressing strong betaA immunoreactivity were macrophages and neutrophils but not eosinophils or mast cells. Thus, cells within the human endometrium are capable of expressing inhibin/activin molecules in vivo. The variation in the pattern of secretion of the betaA subunit across the menstrual cycle suggests that activin peptides may have a physiological role in endometrial function.  相似文献   

6.
One of the first steps in the pathogenesis of endometriosis is the attachment of the endometrium to the peritoneal lining. Since the peritoneum is extremely fragile and hard to obtain, amnion has been used as an in-vitro model to study adhesion. Scanning and transmission electron microscopy was applied to evaluate the adhesion of endometrial cells isolated in the proliferative and secretory phases of the menstrual cycle. Endometrial fragments obtained in either phase of the cycle were able to adhere to the extracellular matrix of the amnion. Fragments from proliferative phase endometrium showed active spreading and growth over the matrix surface, whereas fragments from secretory phase endometrium did not. Fragments from proliferative as well as secretory phase endometrium were able to adhere to the epithelial side of the amnion, but only at locations where the amniotic epithelium was damaged or partly absent. These observations indicate that the basement membrane and extracellular matrix provide a suitable substrate for endometrial cell attachment and growth and that endometrial cell adhesion occurs preferentially to subepithelial structures, whereas an intact epithelium prevents the adhesion of endometrial fragments to the amnion.  相似文献   

7.
8.
Integrins are heterodimeric glycoproteins that have been found to undergo dynamic temporal and spatial changes in distribution in the endometrium during the menstrual cycle in women. Likewise the extracellular matrix (ECM) ligands for these receptors are likely to play a role in the establishment of a receptive endometrium. To develop primate models to study the role of these molecules in the cascade of molecular events leading to implantation, integrin expression and associated changes in ECM were investigated during the menstrual cycle and in early pregnancy in the baboon. Antibodies specific for the integrins (alpha(1-6) and alpha(v); beta1, beta3, and beta4) and ECM (laminin, collagen IV, fibronectin) were utilized. In addition, cytokeratin and alpha-smooth muscle actin were used as epithelial, stromal, and smooth muscle cell markers, respectively. Endometrium was obtained in duplicate or triplicate during the menstrual cycle and early pregnancy. Changes observed during the natural menstrual cycle were confirmed using ovariectomized, steroid-treated animals. Constitutively expressed integrins on the endometrial epithelium included the collagen/laminin receptors: alpha2, alpha3, alpha6, and beta4. The pattern of expression correlated well with the distribution of ECM in this tissue. Collagen IV was confined to the basement membrane of glandular epithelium and blood vessels. Laminin immunostaining was found in the basement membrane, mostly in the stroma of the basal region, in the glandular endometrium and vasculature. Fibronectin was present throughout the stroma but not in the basement membrane. The collagen receptor alpha1 beta1 and fibronectin receptor alpha4 beta1 appeared in the glandular epithelium in the luteal phase. As in the human, alpha1 and alpha4 disappeared from the glandular epithelium with the establishment of pregnancy. In contrast, the alpha4 beta3 vitronectin receptor appeared in the glandular epithelium only in pregnancy or following long-term steroid treatment with estrogen and progesterone but not during the time of uterine receptivity associated with the initial period of embryo attachment. Osteopontin, an ECM ligand for alpha(v) beta3, was coexpressed with this integrin in invading cytotrophoblasts, glandular epithelium, and decidualizing stromal cells. Decidualization in the baboon was associated with changes in integrin expression similar to those found in humans: there was an increase in alpha1, alpha3, alpha6, beta1, and alpha(v) beta3 in the decidualized stromal cells. Laminin and collagen IV expression also increased at the implantation site and throughout the endometrium. In contrast, fibronectin expression was most evident at the implantation site and corresponded to alpha5 expression on the invading cytotrophoblasts. In summary, marked similarities were found in the expression of ECM and the integrin receptors between the baboon and the human endometrium throughout the menstrual cycle and in pregnancy. Cycle-specific integrins, alpha1, and alpha4, were present on epithelial cells during the secretory phase. Delayed expression of alpha(v) beta3 in baboon endometrial glands correlated closely with the time of enhanced glandular secretory activity in this primate. The baboon appears to be an excellent model for the investigation of the role of integrins and ECM leading to successful implantation.  相似文献   

9.
Angiogenesis is an essential component of endometrial regeneration after menses in preparation for implantation. Vascular endothelial growth factor (VEGF) is a secreted angiogenic peptide with mitogenic activity specific for endothelial and trophoblast cells. VEGF-immunoreactivity was detected in glandular epithelium throughout the menstrual cycle by immunohistochemistry, but, showed cyclic variation in the stroma and the blood vessels. During the early proliferative phase, strong staining was seen in the glandular epithelial cells while staining in the stroma was confined to a subpopulation of stromal cells and endometrial blood vessels appeared negative. In contrast, very intense staining of the endometrial stromal cells was seen in the mid proliferative endometrium possibly due to increased synthesis of VEGF by oestrogen. In the late proliferative endometrium, staining was seen in the endothelial cells and the perivascular stromal cells around the endometrial blood vessels. The greatest degree of immunostaining of stromal cells was observed in the mid to late proliferative endometrium. Throughout the secretory phase no staining was seen around the endometrial blood vessels and staining of endometrial stromal cells was confined to early secretory endometrium. In the late secretory endometrium only the glands were positive to VEGF antibody. The observed increase in the immunostaining of stroma suggests increased production of VEGF from early to mid and late proliferative endometrium which parallels the increase in the oestradiol levels in the proliferative phase of the menstrual cycle. It is proposed that VEGF may serve as a paracrine mediator of the effects of ovarian steroids on endometrial vascular development.  相似文献   

10.
OBJECTIVE: The purpose of this study was (1) to evaluate the potential sites of transforming growth factor-beta 1 synthesis in human endometrium by analyzing separated endometrial glands and stromal cells for transforming growth factor-beta 1 messenger ribonucleic acid by Northern analysis of total ribonucleic acid and (2) to investigate the effects of transforming growth factor-beta 1 on deoxyribonucleic acid synthesis in endometrial epithelial and stromal cells in culture. STUDY DESIGN: Endometrial glands and stroma from proliferative and secretory endometrium were isolated after collagenase treatment of endometrial tissue minces and were analyzed for transforming growth factor-beta 1 messenger ribonucleic acid by Northern analysis. We studied the effects of estradiol-17 beta and transforming growth factor-beta 1 on deoxyribonucleic acid synthesis in endometrial epithelium and transforming growth factor-beta 1 on stromal cells in culture by evaluating tritiated thymidine incorporation into trichloroacetic acid-precipitable material. RESULTS: Transforming growth factor-beta 1 messenger ribonucleic acid was detected for Northern analysis in separated endometrial stromal cells in levels that were greatest during the secretory phase and in greater levels than in epithelial cells from that same tissue. Transforming growth factor-beta 1 messenger ribonucleic acid in glandular epithelium in culture was not increased to detectable levels by treatment with transforming growth factor-beta 1. Deoxyribonucleic acid synthesis in endometrial glandular epithelium was inhibited by transforming growth factor-beta 1, but transforming growth factor-beta 1 stimulated deoxyribonucleic acid synthesis in endometrial stromal cells in culture. After treatment for 5 days with estradiol-17 beta (10(-8) mol/L), deoxyribonucleic acid synthesis in endometrial glands in culture was decreased by 40%. Transforming growth factor-beta 1 (1 ng/ml) did not alter this effect of estradiol-17 beta on deoxyribonucleic acid synthesis. CONCLUSIONS: Transforming growth factor-beta 1 acts to decrease deoxyribonucleic acid synthesis in epithelial cells and to increase it in stromal cells isolated from human endometrium and maintained in monolayer culture. Transforming growth factor-beta 1, potentially of stromal cell origin, could participate in the regulation of endometrial cell proliferation and differentiation in vivo.  相似文献   

11.
Telomerase activity is associated with the proliferative activity of cells. In the endometrium, telomerase activity is higher in the proliferative phase than in the secretory phase of the menstrual cycle, suggesting that telomerase activity may occur primarily in the glandular epithelial cells. To test this, a dissociated cell culture of the endometrium was performed, and the telomerase activity in each cell fraction was analysed. Telomerase activity was found in all 10 endometrial tissues of the proliferative phase of the menstrual cycle. Both the fragments of epithelial glands and single cells, which were prepared by enzymatic dissociation, showed telomerase activity. In the 7 day cell culture, it was found in nine out of 10 epithelial cell enriched fractions, but in none of the stromal cell enriched fractions. Flow cytometric analysis showed that the epithelial enriched fraction was contaminated with a predominant number of stromal cells, while the stromal cell enriched fraction was comprised mostly of stromal cells with apparent proliferative activity. Our results suggest that telomerase activity of the endometrium occurs primarily in the epithelial cells in the endometrium and that the stromal cells do not express telomerase activity regardless of their potent proliferative activity.  相似文献   

12.
Embryonic implantation and maintenance of pregnancy is influenced by the maternal immunological response. Type 2 T-helper (Th2) cells secrete interleukins 4, 5, 6 and 10 and are associated with suppression of cell-mediated immunity. Temporal changes in the expression of these cytokines were detectable by immunohistochemistry throughout the menstrual cycle. In pregnancy, 10-fold or greater increases in interleukin 6 and 10 secretion were detectable by enzyme-linked immunoassay compared with the non-pregnant state. The pattern of expression of Th2 cytokines suggests that progesterone may influence endometrial cytokine secretion. During pregnancy, Th2 expression paralleled that of vimentin, a stromal cell marker, suggesting that these cells may be a principal source of Th2 cytokines may be a mechanism of suppressing cell-mediated immunity in the endometrium, which may in turn enhance embryonic implantation and maintenance of pregnancy.  相似文献   

13.
Estradiol (E2) and progesterone are responsible for regulating PG synthesis in the endometrium during the estrous cycle and interferon-tau (IFN-tau) alters PG synthesis during early pregnancy in ruminants. In this study, we examined the effects of these steroid hormones and recombinant bovine IFN-tau (rbIFN-tau) on PG production and on cyclooxygenase-2 (COX-2) and PG F (PGF) synthase (PGFS) gene expression in isolated endometrial cells. E2 decreased both PGF2alpha and PG E2 (PGE2) whereas progesterone increased PGF2alpha secretion in epithelial cells. Steroid hormones had no effect on PG production in stromal cells. rbIFN-tau attenuated both PGF2alpha and PGE2 production in epithelial cells and enhanced their production, and the ratio of PGE2 to PGF2alpha, in stromal cells. Northern blot analysis showed that E2 and rbIFN-tau decreased COX-2 messenger RNA (mRNA) levels in epithelial cells. Conversely, rbIFN-tau increased COX-2 mRNA in stromal cells. Furthermore, rbIFN-tau decreased PGFS mRNA in both cell types and this was associated with the increase in PGE2/PGF2alpha ratio. These results show that the regulation of PG synthesis by steroid hormones is different in endometrial epithelial and stromal cells in vitro. The attenuation of PGF2alpha secretion from epithelial cells and increased PGE2 production in stromal cells by rbIFN-tau are modulated by steroid hormones.  相似文献   

14.
Renin and angiotensin converting enzymes (ACE) are responsible for the generation of angiotensin II which regulates blood pressure and fluid/electrolyte homeostasis. The cellular localization and cyclic distribution of renin and ACE in human endometrium are demonstrated in this study. Immunohistochemical studies revealed that both renin and ACE were consistently localized in the endometrial glandular epithelia throughout the menstrual cycle; however, the immunostainings respectively for ACE and renin were weak and moderate in stromal cells of proliferative endometrium and negligible in secretory endometrium. No renin immunostaining was detected around endometrial blood vessels. Although endothelial cells consistently stained for ACE, no renin immunoreactivity was detected in these cells during the menstrual cycle. Western blot analysis using ACE antibody directed against human kidney identified a single protein band with a relative molecular mass of approximately 153 kDa. The intensity of this band showed cyclic variation during the menstrual cycle with the highest ACE expression during the late secretory phase and at menses suggesting that ACE plays a role in the initiation of menstruation. The differences in the cellular distribution patterns of these two enzymes further supports our previous proposition that angiotensin II has different functions at the different stages of the menstrual cycle.  相似文献   

15.
16.
The specific activity of enkephalinase in endometrial tissue of nonpregnant ovulatory women is correlated in a highly significant, positive manner with the plasma level of progesterone. The specific activity and levels of enkephalinase messenger ribonucleic acid and immunoreactive protein also are increased in human endometrial stromal cells in culture by treatment with a synthetic progestin, medroxyprogesterone acetate (MPA), in a time- and dose-dependent manner. From an analysis of the temporal relationship between the specific activity and half-life of enkephalinase in endometrial tissue and the level of progesterone in plasma, it appeared highly likely that some mechanism, in addition to progesterone withdrawal, was operative to reduce enkephalinase activity in endometrium during the late luteal phase of the ovarian cycle before progesterone levels had declined below those known to be effective for progesterone action. In stromal cells previously (and concurrently) treated with MPA (10(-9) mol/L), the addition of transforming growth factor-beta 1 (TGF beta 1) or TGF beta 2 (1 ng/mL) to the medium caused a decrease in enkephalinase specific activity despite the continued presence of MPA. The half-life of enkephalinase (activity) in stromal cells treated with MPA plus TGF beta 1 was 2.8 days, which is similar to the computed half-life for enkephalinase in endometrial tissue during the mid- to late secretory phase of the endometrial cycle (2.5 days). Simultaneous treatment of endometrial stromal cells with MPA (10(-9) mol/L) and TGF beta 1 (1 ng/ mL) prevented the progestin-induced increase in enkephalinase specific activity and immunoreactive enkephalinase protein. Thus, TGF beta acts to oppose the progesterone-induced increase in enkephalinase expression in endometrial stromal cells, even in the continued presence of MPA.  相似文献   

17.
The human endometrium acquires the ability to implant the developing embryo within a specific time window that is thought to open between days 19-24 of the secretory phase of the menstrual cycle. During this period the endometrium undergoes pronounced structural and functional changes induced by the ovarian steroids, estrogen and progesterone, that prepare it to be receptive to invasion by the embryo. The identification of reliable biochemical markers to assess this critical receptive phase in the context of the natural cycle remains one of the major challenges in the study of human reproduction. Our previous studies in a rat model system demonstrated that the expression of calcitonin, a peptide hormone involved in calcium homeostasis, is transiently induced by progesterone in the glandular epithelium at the onset of implantation. Attenuation of calcitonin synthesis in the uterus during the preimplantation phase by administration of calcitonin antisense oligodeoxynucleotides severely impairs implantation of rat embryos, suggesting that this peptide hormone plays a critical role in uterine receptivity. To investigate whether calcitonin is also expressed in the human endometrium during implantation, we monitored the spatio-temporal expression of calcitonin on various days of the menstrual cycle. Our studies employing RT-PCR showed that calcitonin messenger ribonucleic acid is expressed in human endometrium during the postovulatory midsecretory phase (days 17-25) of the menstrual cycle, with maximal expression occurring between days 19-21. Very little calcitonin expression was detected in the endometrium in either the preovulatory proliferative (days 5-14) or the late secretory (days 26-28) phase. In situ hybridization and immunocytochemical analyses localized the calcitonin expression predominantly in the glandular epithelial cells of the endometrium. Our studies further showed that calcitonin expression in the human endometrium is under progesterone regulation. Treatment of women with an antiprogestin, mifepristone (RU-486), drastically reduced calcitonin expression in the endometrium. Collectively, these findings reveal that progesterone-induced expression of calcitonin in the secretory endometrium temporally coincides with the putative window of implantation in the human.  相似文献   

18.
Human endometrial leukocytes undergo regular cyclical changes during the menstrual cycle, with a striking increase in the phenotypically unusual population of CD56+ CD16- endometrial granulated lymphocytes (eGLs) in the late secretory phase and early pregnancy. The factors that regulate this increase in eGL numbers are unclear; their unusual morphology, however, has led to the suggestion that they undergo apoptosis at the end of the menstrual cycle. Apoptosis, bcl-2 expression, and proliferative activity were examined in the stroma of normal cycling, progesterone-treated, and early-pregnancy endometrium. The expression of bcl-2 and the Ki67 proliferation marker by highly purified (> 98% CD56+) eGLs from endometrium during the menstrual cycle and from first-trimester decidua was also studied. Apoptotic cells were rarely observed in the endometrial stroma of any of the samples examined. Stromal bcl-2 expression, however, increased from the proliferative to the premenstrual phase, and double immunohistochemical labeling demonstrated large numbers of bcl-2+ CD56+ eGLs. In contrast, Ki67 expression was high in the endometrial stroma during the proliferative phase, fell during the secretory phase, and rose again premenstrually, because of expression by eGLs. Isolated CD56+ eGLs also showed high bcl-2 and Ki67 expression at the end of the menstrual cycle. Unlike premenstrual endometrium, progesterone-treated endometrium and first-trimester decidua contained few proliferating cells, expressed high levels of bcl-2, and showed no evidence of apoptosis. Thus, eGLs do not undergo apoptosis in premenstrual endometrium, and their regulatory mechanisms remain to be clarified.  相似文献   

19.
20.
The human endometrium undergoes a complex process of vascular and glandular proliferation, differentiation, and regeneration with each menstrual cycle in preparation for implantation. Vascular endothelial growth factor (VEGF) is an endothelial cell-specific angiogenic protein that appears to play an important role in both physiological and pathological neovascularization. To investigate whether VEGF may regulate human endometrial angiogenesis, we examined VEGF messenger ribonucleic acid (mRNA) and protein throughout the menstrual cycle and studied the regulation of VEGF by reproductive steroids in isolated human endometrial cells. By ribonuclease protection analysis, VEGF mRNA increased relative to early proliferative phase expression by 1.6-,2.0-, and 3.6-fold in midproliferative, late proliferative, and secretory endometrium, respectively. In histological sections, VEGF mRNA and protein were localized focally in glandular epithelial cells and more diffusely in surrounding stroma, with greatest VEGF expression in secretory endometrium. Consistent with these in vivo results, the treatment of isolated human endometrial cells with estradiol (E2), medroxyprogesterone acetate (MPA), or E2 plus MPA significantly increased VEGF mRNA expression over the control value by 3.1-, 2.8-, and 4.7-fold, respectively. The VEGF response to E2 was rapid, with steady state levels of VEGF mRNA reaching 85% maximum 1 h after the addition of steroid. E2 also caused a 46% increase in secreted VEGF protein, and the combination of E2 and MPA caused an 18% increase. VEGF expression in endometriosis, an angiogenesis-dependent, estrogen-sensitive disease was similar to that seen in eutopic endometrium. Peritoneal fluid concentrations of VEGF were significantly higher in women with moderate to severe endometriosis than in women with minimal to mild endometriosis or no disease. VEGF, therefore, may be important in both physiological and pathological angiogenesis of human endometrium, as it is an estrogen-responsive angiogenic factor that varies throughout the menstrual cycle and is elevated in women with endometriosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号