首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is interest in knowing if the source of nonfibrous carbohydrates (NFC) influences milk production and composition. Our objective was to determine the effects of source (starch or sugar) and level of NFC in the diet on these parameters. A 4 x 4 Latin square replicated five times using early-lactation (56 +/- 9 DIM) Holstein cows was used; cows were offered one of two levels of NFC and either no added sucrose or sucrose substituting for 10% of the corn. Diets were balanced to meet National Research Council requirements for total protein, energy, and minerals. Tall fescue silage was included at one of two levels (0.95 or 1.25% of BW as forage NDF), resulting in diets with 40 and 30% NFC. The remaining ingredients consisted of high-moisture corn, soybean meal, SoyPlus, minerals, and vitamins. Megalac (0.45 kg) was used in the low NFC diets. High NFC diets were lower (P < 0.01) in neutral detergent fiber (NDF; 31.5%) and crude protein (CP; 19.6%) than the low NFC diet (35.8% NDF and 21.0% CP). Sucrose containing diets were somewhat lower (P < 0.01) in NDF (33.1%) than the no sucrose added diets (34.3%), but diets did not differ in CP%. Cows offered the high NFC level produced more milk (39.6 kg/d; P < 0.05) than those offered the low level (38.3 kg/d), primarily due to higher dry matter intake (P < 0.05). Cows consuming the high NFC diet also had lower (P < 0.05) milk fat (3.25%) and milk urea nitrogen (MUN; 13.7 mg/dl), and higher (P < 0.05) milk protein (2.58%) and milk lactose (4.81%) concentrations than cows offered the low NFC level (3.46% milk fat, 17.5 mg/dl MUN, 2.51% milk protein, and 4.74% milk lactose). Fat yield was higher (P < 0.05) for cows fed low NFC diets than cows fed high NFC diets, whereas protein and fat yield were lower (P < 0.05) for cows fed low NFC diets than those fed high NFC diets. The NFC source did not influence dry matter intake or milk production or milk component yield (P > 0.05). Milk lactose (4.79%) and MUN (16.0 mg/dl) concentrations were higher (P < 0.05) for cows offered sucrose as a portion of the NFC compared with those not offered sucrose (4.76% milk lactose and 15.2 mg/dl MUN). Results suggest that cows fed sucrose may utilize diet nitrogen less efficiently than those not fed sucrose, when sucrose is replacing a portion of the high-moisture corn in the diet.  相似文献   

2.
The objective of this research was to estimate heritabilities of milk urea nitrogen (MUN) and lactose in the first 3 parities and their genetic relationships with milk, fat, protein, and SCS in Canadian Holsteins. Data were a random sample of complete herds (60,645 test day records of 5,022 cows from 91 herds) extracted from the edited data set, which included 892,039 test-day records of 144,622 Holstein cows from 4,570 herds. A test-day animal model with multiple-trait random regression and the Gibbs sampling method were used for parameter estimation. Regression curves were modeled using Legendre polynomials of order 4. A total of 6 separate 4-trait analyses, which included MUN, lactose, or both (yield or percentage) with different combinations of production traits (milk, fat and protein yield, fat and protein percentages, and somatic cell score) were performed. Average daily heritabilities were moderately high for MUN (from 0.384 to 0.414), lactose kilograms (from 0.466 to 0.539), and lactose percentage (from 0.478 to 0.508). Lactose yield was highly correlated with milk yield (0.979). Lactose percentage and MUN were not genetically correlated with milk yield. However, lactose percentage was significantly correlated with somatic cell score (−0.202). The MUN was correlated with fat (0.425) and protein percentages (0.20). Genetic correlations among parities were high for MUN, lactose percentage, and yield. Estimated breeding values (EBV) of bulls for MUN were correlated with fat percentage EBV (0.287) and EBV of lactose percentage were correlated with lactation persistency EBV (0.329). Correlations between lactose percentage and MUN with fertility traits were close to zero, thus diminishing the potential of using those traits as possible indicators of fertility.  相似文献   

3.
The objective of this research was to determine whether different dry matter intakes (DMI) or forage percentages prepartum would have an impact on postpartum performance. Multiparous Holstein cows (n = 41) received either high (H) or low (L) forage rations that were fed free choice (F) or restricted (R), i.e., HF, HR, LF, and LR. The L rations were higher in net energy of lactation and lower in neutral detergent fiber concentrations. After calving, all cows were fed the same ration ad libitum. Prepartum DMI were 8.0 for R versus 12.4 kg/d for F with LF greater than HF (14.1 vs. 10.7 kg/d). Prepartum treatments did not affect postpartum means for DMI, milk yield, milk protein percentage, body weight, body condition score, or plasma glucose concentrations (overall means 1 to 40 DIM were, respectively, 21.1 kg/d, 34.0 kg/d, 3.03%, 624 kg, 3.2, and 66 mg/dl). However, curves from 1 to 40 DIM showed that DMI and milk yield were slightly higher in early lactation in cows whose DMI had been restricted prepartum but mean milk fat percentage was lower (3.10 vs. 3.42%). Plasma NEFA were higher and insulin lower in H versus L before and after calving. High DMI prepartum, at best, showed no advantage over restricted feeding.  相似文献   

4.
《Journal of dairy science》2023,106(8):5562-5569
The aim of this study was to estimate genetic parameters for milk urea (MU) content in 3 main Danish dairy breeds. As a part of the Danish milk recording system, milk samples from cows on commercial farms were analyzed for MU concentration (mmol/L) and the percentages of fat and protein. There were 323,800 Danish Holstein, 70,634 Danish Jersey, and 27,870 Danish Red cows sampled with a total of 1,436,580, 368,251, and 133,922 test-day records per breed, respectively, included in the data set. Heritabilities for MU were low to moderate (0.22, 0.18, and 0.24 for the Holstein, Jersey, and Red breeds, respectively). The genetic correlation was close to zero between MU and milk yield in Jersey and Red, and −0.14 for Holstein. The genetic correlations between MU and fat and protein percentages, respectively, were positive for all 3 dairy breeds. Herd-test-day explained 51%, 54%, and 49% of the variation in MU in Holstein, Jersey, and Red, respectively. This indicates that MU levels in milk can be reduced by farm management. The current study shows that there are possibilities to influence MU by genetic selection as well as by farm management.  相似文献   

5.
The objectives of this study were to assess the relationship between urinary nitrogen excretion (UN, g/d) and milk urea nitrogen concentration (MUN, mg/dl) and whether the types of carbohydrates fed interacts with the dietary CP and the breed (size) of cows to affect this relationship. Eight multiparous cows (four Holstein and four Jersey) were fed four different diets in a 2 x 2 factorial arrangement of levels of crude protein (13 and 17%) and levels of neutral detergent fiber (30 and 40%). The experimental design was a split plot Latin square with breeds forming the main plots and diets forming the subplots. Experimental periods were 3 wk in length, with d 1 to 14 used for adjustment and d 15 to 19 used for a total collection of urine and feces. Crude protein concentrations had a significant effect on milk, milk fat and protein production, plasma urea N, MUN, and on N balance measurements (N intake, fecal and urinary N excretion, milk N production, N retention, apparent N digestibility, and N efficiency). Neutral detergent fiber levels had no effect on any production parameters or N balance measurements. The relationship between urinary N and MUN was linear over the range of MUN values observed and different for the two breeds. The breed effect on the UN-MUN relationship was no longer significant (P = 0.63) when body weight (BW) was included in the model. The optimal allometric coefficient for BW was 0.96 and was not different from 1.0. Therefore, the following equation is proposed to predict UN excretion based on MUN and BW: UN (g/d) = 0.0259 (+/- 0.0006) BW (kg) x MUN (mg/dl).  相似文献   

6.
The aim of this study was to assess the phenotypic level of lactose and milk urea nitrogen concentration (MUN) and the association of these traits with functional survival of Canadian dairy cattle using a Weibull proportional hazards model. A total of 1,568,952 test-day records from 283,958 multiparous Holstein cows from 4,758 herds, and 79,036 test-day records from 26,784 multiparous Ayrshire cows from 384 herds, calving from 2001 to 2004, were used for the phenotypic analysis. The overall average lactose percentage and MUN for Ayrshires were 4.49% and 12.20 mg/dL, respectively. The corresponding figures for Holsteins were 4.58% and 11.11 mg/dL. Concentration of MUN increased with parity number, whereas lactose percentage decreased in later parities. Data for survival analysis consisted of 39,536 first-lactation cows from 1,619 herds from 2,755 sires for Holsteins and 2,093 cows in 228 herds from 157 sires for Ayrshires. Test-day lactose percentage and MUN were averaged within first lactation. Average lactose percentage and MUN were grouped into 5 classes (low, medium-low, medium, medium-high, and high) based on mean and standard deviation values. The statistical model included the effects of stage of lactation, season of production, the annual change in herd size, type of milk-recording supervision, age at first calving, effects of milk, fat, and protein yields calculated as within herd-year-parity deviations, herd-year-season of calving, lactose percentage and MUN classes, and sire. The relative culling rate was calculated for animals in each class after accounting for the remaining effects included in the model. Results showed that there was a statistically significant association between lactose percentage and MUN in first lactation with functional survival in both breeds. Ayrshire cows with high and low concentration of MUN tended to be culled at a higher than average rate. Instead, Holstein cows had a linear association, with decreasing relative risk of culling with increasing levels of MUN concentration. The relationship between lactose percentage and survival was similar across breeds, with higher risk of culling at low level of lactose, and lower risk of culling at high level of lactose percentage.  相似文献   

7.
A double-blind field trial was conducted on a commercial dairy to study the effects of feeding a direct-fed microbial (DFM) product consisting of 2 strains of Enterococcus faecium plus Saccharomyces cerevisiae yeast on prepartum and postpartum performance of Holstein cows. Treatments consisted of the normal pre- and post-fresh TMR supplemented with the DFM (2 g/cow per d) or a placebo. Treatments started approximately 10 d prepartum and continued until about 23 d in milk (DIM). A total of 366 Holstein cows were enrolled in 1 of 2 placebo groups or 2 DFM-supplemented groups. Groups were enrolled consecutively, starting with the placebo treatment. Sample size was limited to 4 groups because the cooperating dairy prematurely terminated the study due to increased health problems in one of the groups. Blood samples were taken during the prefresh period between 2 and 10 d prior to calving and at weekly intervals from 3 to 23 DIM. Blood concentrations of nonesterified fatty acids before calving and β-hydroxy-butyrate after calving were not affected by treatment. Supplementation with the DFM product increased milk fat percentage for the first lactation cows and increased milk protein percentage for the second and greater lactation cows during the first 85 DIM. Second-lactation cows fed the DFM product received fewer antibiotic treatments before 85 DIM than cows receiving the placebo. This validated the dairy producer's concern that cows consuming one of the diets (revealed to be the placebo diet after the study was completed) were experiencing more health problems. Most measures of milk yield were numerically increased by supplementation with the DFM product. However, differences in milk yield were not significant. Key covariates for main study outcomes included milk yield in the previous (first) lactation, body condition score prior to calving, days spent in the maternity pen, and stocking density of the pre-fresh pen.  相似文献   

8.
Sources of variation in milk urea nitrogen in Ohio dairy herds   总被引:6,自引:0,他引:6  
The purpose of this study was to estimate the amount of variation in milk urea nitrogen (MUN) concentrations attributable to test-day, individual cow, and herd effects and to describe factors associated with MUN measurements in Ohio dairy herds. The data came from 24 Holstein herds, half of which were classified as low producing (LP) [rolling herd average (RHA) milk production < 7,258 kg] and half as high producing (HP) herds (RHA production > 10,433 kg). MUN concentration was measured from cow's monthly test-day milk samples. The data were analyzed using multilevel modeling technique in MLwiN, separately for LP and HP herds. The unadjusted mean MUN was 13.9 mg/dl for the HP herds and 11.3 mg/dl for the LP herds. The variance structure was different between the two groups. Most of the variability was found at test-day level in the LP herds, but at herd level in HP herds. MUN was lowest during the first month of lactation, and also season was associated with MUN in both groups. Test-day milk yield, milk fat percentage, and SCC were associated with MUN in the HP herds. With significant explanatory variables in the model, proportionally more of the variation was explained at herd level and less at test day level in both groups. Lower variability in MUN between test days in the HP herds may indicate more consistent day-to-day feeding and management within a herd. The great variability between test days should be considered when interpreting MUN and samples should be collected at the same time of the day to minimize day-to-day variability.  相似文献   

9.
In this study, we evaluated the effects of dietary supplementation at two stages of lactation with various levels of Mepron85 (M85) and M85 plus DL-methionine (DL-Met) on milk production and composition of Holstein and Brown Swiss cows fed an alfalfa-hay and corn grain-based diet. In experiment 1, control diets were formulated to supplement, in early lactation [days in milk (DIM) = 73.2], concentrations of metabolizable methionine at 104% of the estimated requirements based on the Cornell Net Carbohydrate and Protein System. Treatment groups were fed the control diet plus 10, 20, or 30 g/d of M85 at 116, 128, or 139% of the estimated requirements for metabolizable methionine. The supplementation with 10 g/d in Brown Swiss and 30 g/d of M85 in Holstein cows increased milk yields and fat percentage, but had no effects on protein percentage. These data suggested that the estimated postruminal supply of metabolizable methionine in the control ration was limiting for maximum milk fat synthesis. Conversely, in experiment 2, the cosupplementation with M85 (15 g/d) plus DL-Met (15 g/d) to cows in midlactation (DIM = 140.5) did not influence fat percentage, but increased protein yield and percentage (+0.1%) in both Holstein and Brown Swiss, and lactose percentage (+0.18%) in Holstein cows. The supplementation with 15 g/d of M85 reduced milk and protein yields, whereas 15 g/d of DL-Met reduced protein percentage in four of the five experimental weeks for Holstein cows. We conclude that supplementation with M85, alone or in combination with DL-Met, may be used to influence milk composition, but these effects are influenced by dosage and type of supplemental methionine, breed, and stage of lactation.  相似文献   

10.
Research exploring specific associations of markers of negative energy balance and Ca in postpartum Jersey cows with lactation performance is lacking. Our objectives were to evaluate the associations of total Ca concentration (tCa) measured at 1 through 3 d in milk (DIM) and free fatty acids (FFA), β-hydroxybutyrate (BHB), and glucose measured at 3 DIM with (1) the risk of multiparous Jersey cows being diagnosed with early-lactation diseases and culling, (2) milk production in the first 9 wk of lactation, and (3) the risk of pregnancy in the first 150 DIM. A cohort study was performed in 1 dairy herd in Texas. Multivariable Poisson regression models were built to evaluate the association of the analytes of interest with the risks of early-lactation diseases and culling in the first 60 DIM (i.e., binary outcomes). Linear mixed models were used to evaluate the association of the analytes of interest with milk production within the first 9 wk of lactation, and a Cox proportional hazard model was built to assess the risk of pregnancy within 150 DIM. A total of 380 cows were used in the final analyses. Total Ca measured at 1 through 3 DIM was not associated with the risk of metritis. Cows with increased FFA and BHB had an increased risk of being diagnosed with metritis and clinical mastitis, respectively. Increased concentrations of glucose and FFA and decreased tCa at 3 DIM were associated with an increased risk of culling. Reduced tCa concentrations at 1 DIM (≤1.84 mmol/L) and 2 DIM (≤2.04 mmol/L) were associated with increased milk production across the first 9 wk of lactation compared with tCa concentrations above those thresholds. Total Ca was not associated with milk production when assessed at 3 DIM, whereas increased FFA (≥0.37 mmol/L) and decreased glucose (≤2.96 mmol/L) at 3 DIM were associated with increased milk production. None of the metabolites measured were associated with the risk of pregnancy in the first 150 DIM. Our results demonstrate that tCa concentration assessed in the first 3 DIM show temporary associations with milk production and culling in multiparous Jersey cows. Although increased concentration of FFA assessed at 3 DIM was associated with greater milk yield, it was a detrimental factor for the risk of metritis. This study attempted to better elucidate the relationship of tCa, FFA, BHB, and glucose assessed in early postpartum with health and performance of Jersey cows. Based on this study, assessments performed at 3 DIM using tCa concentration ≤1.99 mmol/L for increased risk of early-lactation culling and FFA ≥0.43 mmol/L for increased risk of metritis could be used as starting points. More studies evaluating the dynamics of energy balance markers and tCa in postpartum Jersey cows using a greater number of herds are needed to better inform dairy consultants on critical levels for exacerbated postpartum negative energy balance and subclinical hypocalcemia for the Jersey breed.  相似文献   

11.
This study analyzed component data from herds participating in the Mideast Federal Milk Marketing Order from 2000 through 2002, and its implications for herd profitability. A monthly simulation model was developed to evaluate the economic returns for a representative Holstein and Jersey herd in Pennsylvania under multiple component pricing. Component levels were highly seasonal and variable from farm to farm. A third of the herds during the course of a year realized a 1- to 3-mo temporary reduction in milk fat or protein greater than one standard deviation. Consistently producing milk fat and protein one standard deviation below the mean reduced the Class III value by $0.82/cwt (100 pounds), or 7.09%. The simulation model indicated that a herd of 100 Holstein cows generated $31,221 more income over feed costs (IOFC) a year than a herd of 100 Jersey cows. Although Jersey milk had greater gross value than Holstein milk due to higher component levels, total volume of milk and components produced by Holsteins offset this difference. Simulation results confirm that increasing milk fat and protein percentages by one standard deviation increased IOFC 7.7% for Holsteins and 9.2% for Jerseys relative to the baseline IOFC, with similar losses for component reductions. Increasing milk yield by one standard deviation increased IOFC by 19.6% for Holsteins and 23.9% for Jerseys relative to the baseline IOFC, again with similar losses for reductions in milk production. In all of the scenarios analyzed, the most important factor affecting IOFC was total amount of milk fat and protein produced, not the component percentage levels.  相似文献   

12.
《Journal of dairy science》2023,106(4):2716-2728
Cows undergo immense physiological stress to produce milk during early lactation. Monitoring early lactation milk through Fourier-transform infrared (FTIR) spectroscopy might offer an understanding of which cows transition successfully. Daily patterns of milk constituents in early lactation have yet to be reported continuously, and the study objective was to initially describe these patterns for cows of varying parity groups from 3 through 10 d postpartum, piloted on a single dairy. We enrolled 1,024 Holstein cows from a commercial dairy farm in Cayuga County, New York, in an observational study, with a total of 306 parity 1 cows, 274 parity 2 cows, and 444 parity ≥3 cows. Cows were sampled once daily, Monday through Friday, via proportional milk samplers, and milk was stored at 4°C until analysis using FTIR. Estimated constituents included anhydrous lactose, true protein, and fat (g/100 g of milk); relative % (rel%) of total fatty acids (FA) and concentration (g/100 g of milk) of de novo, mixed, and preformed FA; individual fatty acids C16:0, C18:0, and C18:1 cis-9 (g/100 g of milk); milk urea nitrogen (MUN; mg/100 g of milk); and milk acetone (mACE), milk β-hydroxybutyrate (mBHB), and milk-predicted blood nonesterified fatty acids (mpbNEFA) (all expressed in mmol/L). Differences between parity groups were assessed using repeated-measures ANOVA. Milk yield per milking differed over time between 3 and 10 DIM and averaged 8.7, 13.3, and 13.3 kg for parity 1, 2, and ≥3 cows, respectively. Parity differences were found for % anhydrous lactose, % fat, and preformed FA (g/100 g of milk). Parity differed across DIM for % true protein, de novo FA (rel% and g/100 g of milk), mixed FA (rel% and g/100 g of milk), preformed FA rel%, C16:0, C18:0, C18:1 cis-9, MUN, mACE, mBHB, and mpbNEFA. Parity 1 cows had less true protein and greater fat percentages than parity 2 and ≥3 cows (% true protein: 3.52, 3.76, 3.81; % fat: 5.55, 4.69, 4.95, for parity 1, 2, ≥3, respectively). De novo and mixed FA rel% were reduced and preformed FA rel% were increased in primiparous compared with parity 2 and ≥3 cows. The increase in preformed FA rel% in primiparous cows agreed with milk markers of energy deficit, such that mpbNEFA, mBHB, and mACE were greatest in parity 1 cows followed by parity ≥3 cows, with parity 2 cows having the lowest concentrations. When measuring milk constituents with FTIR, these results suggest it is critical to account for parity for the majority of estimated milk constituents. We acknowledge the limitation that this study was conducted on a single farm; however, if FTIR technology is to be used as a method of identifying cows maladapted to lactation, understanding variations in early lactation milk constituents is a crucial first step in the practical adoption of this technology.  相似文献   

13.
Effects of partially hydrogenated oil on performance, loss of body weight and body condition score, and blood metabolite and hormone concentrations were evaluated in 37 multiparous Holstein cows in grazing conditions during the first 100 d of lactation. Six additional Holstein cows, each fitted with a ruminal cannula, were allocated to a replicated 3 x 3 Latin square to evaluate effects of supplemental fat on rumen environment and pasture digestion. All cows grazed mixed pastures based on alfalfa (Medicago sativa) and orchardgrass (Dactylis glomerata L.) and received 5.4 kg/d of a basal concentrate to which 0, 0.5, or 1 kg/cow per day of partially hydrogenated oil (melting point 58 to 60 degrees C) containing 30.3, 34.9, 21.8, and 3.3% of C16:0, C18:0, C18:1, and C182, respectively, was added. Feeding 1 kg/d of supplemental fat increased fat-corrected milk from 23.4 to 26.3 kg/d, milk fat content from 3.44 to 3.78%, and milk fat yield from 0.87 to 1.03 kg/d compared to control. Milk protein percentage and yield were not affected. Cows fed 1 kg/d of fat increased the content and yield of C16:0 and C18:0 in milk compared with cows fed no added oil. Dry matter intake (DMI) from pasture decreased from 17.8 kg/d for control cows to 13.6 kg/d for cows fed 1 kg of oil, whereas DMI from concentrate was higher for cows fed 1 kg/d of fat (6.0 kg/d) than for controls (5.2 kg/d). Supplemental fat did not affect total dry matter or estimated energy intake and did not change losses of body weight or body condition scores. Plasma concentrations of nonesterified fatty acids, insulin, somatotrophin, and insulin-like growth factor-I did not differ among treatments. Concentration of plasma triglycerides was lowered from 318.5 to 271.2 mg/dl, whereas plasma cholesterol was elevated from 185.0 to 235.8 mg/dl in cows receiving 1 kg/d of supplemental fat compared with controls. Responses to lipolytic or insulin challenges were not affected by feeding oil. Supplemental fat did not affect the digestion of pasture fiber. The addition of energy in the form of partially hydrogenated fat to early lactation dairy cows fed primarily on pasture increased the yield of fat-corrected milk and milk fat content when it represented about 11% of the total metabolizable energy requirement of cows, without affecting milk protein content. The partial hydrogenation of a byproduct of the oil industry apparently prevented detrimental effects of fat supplementation on ruminal digestion.  相似文献   

14.
《Journal of dairy science》2022,105(5):4410-4420
The purpose of this retrospective cohort study was to evaluate the effects of the timing of hyperketonemia (HYK) diagnosis during early lactation on milk yield and composition, reproductive performance, and herd removal. Plasma β-hydroxybutyrate (BHB) was measured twice a week during the first 2 wk of lactation in 362 multiparous Holstein cows for the diagnosis of HYK. In each week, cows were diagnosed as HYK positive (HYK+) if the plasma BHB concentrations were ≥1.2 mmol/L in at least one of the tests for the week evaluated. Milk-related outcomes (first 10 monthly milk tests) included milk yield, milk fat and protein content, milk urea nitrogen (MUN), and linear score of somatic cell count. Other performance outcomes of interest included risk of pregnancy within 150 d in milk (DIM) and herd removal (i.e., culling or death) within 300 DIM. Statistical models were built separately for cows diagnosed with HYK during the first week of lactation (wk1) and for cows diagnosed during the second week of lactation (wk2). All models for wk2 were adjusted by HYK diagnosed in wk1, along with other potential confounder variables. The association between HYK in each week and milk-related outcomes was assessed using generalized estimated equation models that accounted for repeated measures. Time to pregnancy and time to herd removal were analyzed using Cox's proportional hazard regression models. Seventy-eight cows (21.5%) tested positive for HYK during wk1, 60 cows (16.6%) in wk2, and 29 cows (8.0%) in both weeks. Hyperketonemia during wk1 was associated with a milk yield reduction of 3.7 kg [95% confidence interval (CI): ?6.67 to ?0.76] per cow per day throughout the lactation. Meanwhile, we did not observe evidence of an association between HYK diagnosed during wk2 and milk yield. During the first 2 monthly milk tests, cows diagnosed as HYK+ in wk1 had greater fat (0.42%; 95% CI: 0.16 to 0.67) and MUN (0.75 mg/dL; 95% CI: 0.26 to 1.24) content in milk than HYK-negative (HYK?) cows. We did not detect any evidence of an association between HYK diagnosed in wk2 and these outcomes. The HYK+ cows in wk1 had a 30% [hazard ratio (HR) = 0.70; 95% CI: 0.48 to 1.01] lower risk of pregnancy within 150 DIM and 2.48 times (95% CI: 1.63 to 2.89) higher risk of herd removal within 300 DIM than HYK? cows. Conversely, no evidence of association was observed between HYK+ cows in wk2 and risk of pregnancy by 150 DIM (HR = 0.98; 95% CI: 0.64 to 1.51) or removal from the herd within 300 DIM (HR = 0.91; 95% CI: 0.52 to 1.60). Our findings indicate that HYK diagnosed during wk1 of lactation is associated with negative performance in terms of milk yield, reproduction, and herd removal. No evidence of association was found for the same outcomes when HYK was diagnosed in wk2. Our results suggest the need to consider the timing when HYK is diagnosed when investigating its association with performance outcomes.  相似文献   

15.
The objectives of this study were to measure performance responses and to evaluate indictors of N utilization in late-lactation cows fed diets with incremental reductions in crude protein (CP) concentration. Holstein cows (n = 128; 224 ± 54 d in milk) were stratified by parity and days pregnant (86 ± 25 d) and randomly assigned to 1 of 16 pens in a randomized complete block design. For 3 wk, all cows received a covariate diet containing 16.9% CP [dry matter (DM) basis]. For the subsequent 12 wk, pens were randomly assigned to 1 of 4 treatments that contained 16.2, 14.4, 13.1, or 11.8% CP (DM basis). Diets were offered once daily and contained 32.5% corn silage, 32.5% alfalfa silage, 13.5% high-moisture corn, and 21.5% concentrate mix. A reduction in dietary CP was achieved by replacing soybean meal with soy hulls in the concentrate mix (DM basis). Dry matter intake, milk urea N (MUN; mg/dL), and the yield of milk urea N (g/d) decreased linearly with dietary CP. Compared with a 16.2% CP diet, a 14.4% CP diet did not alter milk yield throughout the study, but the 13.1 and 11.8% CP diets reduced milk yield after 4 and 1 wk, respectively. Furthermore, milk protein percentage was reduced for all dietary CP less than 16.2%, but this negative effect was temporary and disappeared after 7 wk for the 14.4% CP diet. In contrast, MUN adjusted to a new steady state within 1 wk for all dietary treatments. Modeling quadratic responses with a plateau led to predictions of no reduction in fat- and protein-corrected milk (32.6 kg/d) and yields of fat (1.31 kg/d), lactose (1.49 kg/d), and true protein (1.12 kg/d) until dietary CP decreased below 15.5, 15.3, 15.9, and 16.2%, respectively. In this study, MUN and the yield of MUN were highly correlated with N intake, milk protein yield, and fat- and protein-corrected milk. Surprisingly, N use efficiency (milk protein N/intake N) was not correlated with any variables related to N utilization and reached an apparent upper limit of approximately 30%. Although this observation may be associated with feeding diets deficient in metabolizable protein, late-lactation cows in this study adjusted to low dietary CP concentration better than anticipated as milk production was 2.6, 3.6, 6.4, and 8.0 kg/d higher than National Research Council (2001)-predicted metabolizable protein-allowable milk for dietary CP of 16.2, 14.4, 13.1, and 11.8%, respectively.  相似文献   

16.
Milk composition varies with energy status and was proposed for measuring energy balance on-farm, but the accuracy of prediction using monthly samples is not high. With automated sampling and inline milk analysis, a much higher measurement frequency is possible, and thus improved accuracy of energy balance determination may be expected. Energy balance was evaluated using data in which milk composition was measured at each milking. Three breeds (Danish Holstein, Danish Red, and Jerseys) of cows (623 lactations from 299 cows) in parities 1, 2, and 3+ were used. Data were smoothed using a rolling local regression. Energy balance (EBal) was calculated from changes in body reserves (body weight and body condition score). The relationship between EBal and milk measures was quantified by partial least squares regression (PLS) using group means data. For each day in lactation, the within-breed and parity mean EBal and mean milk measures were used. Further PLS was done using the individual cow data. The initial PLS models included 25 combinations of milk measures allowing a range of nonlinear effects. These combinations were as follows: days in milk (DIM); DIM raised to the powers 2, 3, and 4; milk yield; fat content; protein content; lactose content; fat yield; protein yield; lactose yield; fat:protein ratio; fat:lactose ratio; protein:lactose ratio; and milk yield:lactose ratio, together with 10 “diff()” variables. These variables are the current minus the previous value of the milk measure in question. Using group means data, a very high proportion (96%) of the variability in EBal was explained by the PLS model. A reduced model with only 6 variables explained 94% of the variation in EBal. This model had a prediction error of 3.82 MJ/d; the 25-variable model had a prediction error of 3.11 MJ/d. When using individual rather than group means data, the PLS prediction error was 17.3 MJ/d. In conclusion, the mean Ebal of different parities of Holstein, Danish Red, and Jersey cows can be predicted throughout lactation using 1 common equation based on DIM, milk yield, milk fat, and milk protein measures.  相似文献   

17.
The objectives of this study were to assess the relationship between urinary urea N (UUN) excretion (g/d) and milk urea N (MUN; mg/dL) and to test whether the relationship was affected by stage of lactation and the dietary crude protein (CP) content. Twelve lactating multiparous Holstein cows were randomly selected and blocked into 3 groups of 4 cows intended to represent early [123 ± 26 d in milk (DIM); mean ± standard deviation], mid (175 ± 3 DIM), and late (221 ± 12 DIM) lactation stages. Cows within each stage of lactation were randomly assigned to a treatment sequence within a split-plot Latin square balanced for carryover effects. Stage of lactation formed the main plots (squares) and dietary CP levels (15, 17, 19, and 21% of diet dry matter) formed the subplots. Graded amounts of urea were added to the basal total mixed ration to linearly increase dietary CP content while maintaining similar concentrations of all other nutrients among treatments. The experimental periods lasted 7 d, with d 1 to 6 used for adjustment to diets and d 7 used for total collection of urine as well as milk and blood sample collection. Dry matter intake and yields of milk, fat, protein, and lactose declined progressively with lactation stage and were unaffected by dietary CP content. Milk and plasma urea-N as well as UUN concentration and excretion increased in response to dietary CP content. Milk and urine urea-N concentration rose at increasing and decreasing rates, respectively, as a function of plasma urea-N. The renal urea-N clearance rate differed among lactation stages and dietary CP contents. The relationship between UUN excretion and MUN differed among lactation stages and diverged from linearity for cows in early and late lactation. However, these differences were restricted to very high MUN concentrations. Milk urea N may be a useful tool to predict the UUN excretion and ultimately NH3 emission from dairy cattle manure.  相似文献   

18.
Sphingomyelin is a phospholipid located in the outer leaflet of the plasma membrane of most cells and is a component of the milk fat globule membrane. Sphingomyelin and its digestion products participate in several antiproliferative pathways that may suppress oncogenesis. Although milk and dairy products are important sources of sphingomyelin in the human diet, little is known about factors that influence sphingomyelin concentrations in milk fat or whether concentrations can be modified via the nutrition of cows. Sphingomyelin concentrations were determined in milk from Holstein and Jersey cows matched for parity and stage of lactation. Sphingomyelin was more concentrated in milk fat from Holstein cows than in milk fat from Jersey cows (1,044 vs. 839 μg/g of fat). Concentrations in whole milk did not differ because of greater milk fat content for milk from Jerseys. Differences between breeds may be related to the greater fat globule size in milk from Jerseys. Sphingomyelin content in whole milk increased with increasing days in milk because of associated increases in milk fat content. Regardless of breed, primiparous cows had greater amounts of stearic acid and less palmitic acid in sphingomyelin than did older cows. The sphingomyelin concentration in milk fat of cows in a commercial Jersey herd was lower for cows in their fourth or greater parity. Sphingomyelin content in whole milk was greater for cows in late lactation because of greater milk fat content. Feed restriction of multiparous Holstein cows to 37% of ad libitum dry matter intake increased milk fat content but did not affect milk sphingomyelin content or milk fat globule size. Supplementation of the diet with 4% soybean oil did not affect milk composition, sphingomyelin content, or milk fat globule size. Milk was sampled seasonally from 7 herds throughout Illinois during a 2-yr period. Sphingomyelin concentration in milk fat was greatest during summer and least during winter, but whole milk concentrations did not vary across seasons. We conclude that 1) sphingomyelin content of milk fat is greater in milk from Holsteins than that from Jerseys, 2) sphingomyelin content in whole milk increases with stage of lactation, and 3) sphingomyelin content of milk fat is greater during summer. However, efforts to produce milk with a greater sphingomyelin content through altering management and nutrition are unlikely to be successful.  相似文献   

19.
In this study, 400,729 Dairy Herd Improvement (DHI) records collected on 77,178 cows in 692 Midwest herds over 29 mo (January 1999 to May 2001) were used to analyze milk urea nitrogen (MUN) as collected the day of the test in 6 breeds. Records of Holsteins, Jerseys, and Brown Swiss were subjected to stepwise backward elimination analysis with a model including parity (primiparous vs. multiparous cows), sample type (morning vs. evening), milking frequency (2× vs. 3× [Holstein only]), season (winter, spring, summer, and fall), yield of fat-corrected milk (FCM) classified into 1 of 3 FCM categories (FCMc) and all possible higher-order interactions. Results indicated that FCMc contributed to test-day MUN variation in multiparous, but not primiparous, Holsteins. Sample type and season were significant in both parity groups; milking frequency was not significant, but milking frequency × season and milking frequency × FCMc were significant in both parity groups. The nature of these interactions differed for each parity group. For Jersey and Brown Swiss data analyzed by sample type separately, parity was not significant but tended to interact with FCMc, whereas season, FCMc, and season × FCMc were generally significant. Mean test-day MUN was 12.7, 14.6, and 14.4 mg/dL, with 24, 45, and 42% of records above 14.5 mg/dL in Holsteins, Jerseys, and Brown Swiss in single-breed herds, respectively. In Holsteins, MUN peaked at 7 to 10 d in milk (DIM), declined until 28 to 35 DIM, and rose again thereafter. In primiparous Holsteins, MUN did not change with FCM ≤42 kg/d, but for higher FCM yield, MUN declined linearly by 0.05 mg/dL per kilogram of FCM. In multiparous Holsteins, MUN increased by 0.06 and 0.03 mg/dL per kilogram of FCM as FCM yield increased from 5 to 29 and from 30 to 59 kg/d, respectively, but decreased by 0.06 mg/dL as FCM yield increased from 60 to 85 kg/d. The use of adjustment coefficients may facilitate interpretation of test-day MUN on commercial herds. Research should focus on the biological significance of the pattern of change in MUN the first few weeks postpartum and the drop in MUN in unusually high-producing cows.  相似文献   

20.
《Journal of dairy science》2023,106(1):352-363
The main objectives of this study were to estimate genetic parameters for milk urea nitrogen (MUN) in Holstein cattle and to conduct a single-step (ss)GWAS to identify candidate genes associated with MUN. Phenotypic measurements from 24,435 Holstein cows were collected from March 2013 to July 2019 in 9 dairy farms located in the Beijing area, China. A total of 2,029 cows were genotyped using the Illumina 150K Bovine Bead Chip, containing 121,188 SNP. A single-trait repeatability model was used to evaluate the genetic background of MUN. We found that MUN is a trait with low heritability (0.06 ± 0.004) and repeatability (0.12). Considering similar milk production levels, a lower MUN concentration indicates higher nitrogen digestibility. The genetic correlations between MUN and milk yield, net energy concentration, fat percentage, protein percentage, and lactose percentage were positive and ranged from 0.02 to 0.26. The genetic correlation between MUN and somatic cell score (SCS) was negative (?0.18), indicating that animals with higher MUN levels tend to have lower SCS. Both ssGWAS and pathway enrichment analyses were used to explore the genetic mechanisms underlying MUN. A total of 18 SNP (located on BTA11, BTA12, BTA14, BTA17, and BTA18) were found to be significantly associated with MUN. The genes CFAP77, CAMSAP1, CACNA1B, ADGRB1, FARP1, and INTU are considered to be candidate genes for MUN. These candidate genes are associated with important biological processes such as protein and lipid metabolism and binding to specific proteins. This set of candidate genes, metabolic pathways, and their functions provide a better understanding of the genomic architecture and physiological mechanisms underlying MUN in Holstein cattle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号