首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Pan X  Chen C  Zhu K  Fan Z 《Nanotechnology》2011,22(23):235402
We present a detailed study of the infiltration of titanium dioxide (TiO(2)) nanotubes (NTs) with TiO(2) nanoparticles (NPs) for dye sensitized solar cells (DSSCs). The aim is to combine the merits of the NP's high dye loading and high light harvesting capability with the NT's straight carrier transport path and high electron collection efficiency to improve the DSSC performance. On infiltrating NTs with TiCl(4) solution followed by hydrothermal synthesis, 10 nm size NPs were observed to form a conformal and dense layer on the NT walls. Compared with the bare NT structure, dye loading of this mixed NT and NP structure is more than doubled. The overall photon conversion efficiencies of the fabricated DSSCs are improved by 152%, 107%, and 49% for 8, 13, and 20 μm long NTs, respectively. Electron transport and recombination parameters were extracted based on electrochemical impedance spectroscopy measurements. Although a slight reduction of electron lifetime was observed in the mixed structures due to enhanced recombination with a larger surface area, the diffusion length is still significantly longer than the NT length used, suggesting that most electrons are collected. In addition to dye loading and hence photocurrent increment, the photovoltage and filling factor were also improved in the mixed structure due to a low serial resistance, leading to the enhancement of the overall efficiency.  相似文献   

2.
TiO2-based nanotubes (NTs), nanoparticles (NPs) and composite structural film (50% NP + 50% NT film) were synthesized by sol-gel hydrothermal process. Synthetic indigo dye was used as a sensitizer with the unique combination of electrolyte (EMII + BMII + PMII) and with cobalt sulphide as counter electrode. The structure and morphology of the three films, namely, NP, NT and NPNT is studied through X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The absorption spectra and incident photon-to-current conversion efficiency (IPCE) of the three films were compared and found to be higher for NPNT film. The efficiency and photocatalytic activity of three films were evaluated. The composite structure showed improved efficiency (1.72%) than NP (1%) and NT films (0.78%). The photocatalytic activity of the three films were measured using organic dye, methylene blue under UV light radiation. The composite structure showed higher dye absorption and higher rate of reaction with time. This paper certainly proves that there are many rooms to focus on the photoanode configuration, which plays a key role to improve the efficiency of dye-sensitized solar cell (DSSC).  相似文献   

3.
Dye-sensitized solar cells (DSSCs) were fabricated using TiO2 mesoporous layers obtained by very simple method—transformation of TiO2 nanotube (NT) films grown by electrochemical oxidation to nanoparticle (NP) films. This transformation is based on thermal annealing of TiO2 NT arrays formed by anodization of titanium foil in fluorine ambient. Performance of DSSCs fabricated with different size NPs was studied in the range from 35 to 350 nm. Highest nominal efficiency (9.05%) was achieved for DSSC with NP size 65 nm while the lowest nominal efficiency (1.48%) was observed for DSSCs with NP size 350 nm. The dependence of the solar cell parameters with NP size is discussed.  相似文献   

4.
Wu JJ  Chen GR  Lu CC  Wu WT  Chen JS 《Nanotechnology》2008,19(10):105702
TiO(2) nanowire (NW)/nanoparticle (NP) composite films have been fabricated by hybridizing various ratios of hydrothermal anatase NWs and TiO(2) NPs for use in dye-sensitized solar cells (DSSCs). Scanning electron microscopy (SEM) images reveal that uniform NW/NP composite films were formed on fluorine-doped tin oxide?(FTO) substrates by the dip-coating method. The NWs are randomly but neither vertically nor horizontally oriented within the composite film. The TiO(2) NP DSSC possesses superior performance to those of the NW/NP composite and the pure NW cells, and the efficiency of the NW/NP composite DSSC increases on increasing the NP/NW ratio in the composite anode. All types of DSSC possess the same dependence of performance on the anode thickness that the efficiency increases with the anode thickness to a maximum value, then it decreases when the anode is thickened further. Electrochemical impedance spectroscopy analyses reveal that the NP DSSCs possess larger effective electron diffusion coefficients (D(eff)) in the photoanodes and smaller diffusion resistances of I(3)(-) in electrolytes compared to those in the NW/NP and the NW DSSCs. D(eff) decreases when NWs are added into the photoanode. These results suggest that the vertical feature of the NWs within the anodes is crucial for achieving a high electron transport rate in the anode.  相似文献   

5.
Ultrathin TiO2 anatase nanowires (NWs) were successfully prepared via a rapid and facile hydrothermal route. Consequently, the TiO2 NWs and TiO2 nanoparticles (NPs) composites electrodes were prepared with different weight ratios (25, 50 and 100 %) for a dye sensitized solar cell, and the photoelectrical performance has been systematically studied. It is observed that although the amount of absorption dye decreases, the composite solar cells exhibit a higher power conversion efficiency compared to either pure TiO2 NP or NW solar cells by rationally tuning the weight ratios. The behavior was attributed to a combination of the rapid carrier transport in NW framework and the high dye loading on P25 surface.  相似文献   

6.
The light harvesting efficiency of dye-sensitized solar cells was enhanced by using a scattering layer. Such as sphere type TiO2, inverse photonic crystal TiO2, hollow spherical TiO2. Among these materials, the TiO2 with inverse photonic crystal (IPC) structure, synthesized by self-assembly using spherical templates, has attracted much attention due to their photonic crystal characteristics and light scattering effects. However, when applied in the DSSCs, the surface area of IPC is very low that caused insufficient adsorption amount of dye molecules. In the present work, a scattering layer with mesoporous inverse photonic crystal (MIPC) TiO2 film was fabricated by the sol-gel reactions with surfactant-assisted sol-gel method using poly(methyl methacrylate) as the template and titanium (IV) isopropoxide as the TiO2 precursor. After removing the PMMA and surfactant, a highly ordered macroporous structure with mesopores were successfully obtained. The surface area and total pore volume of the MIPC were 82 m2/g and 0.31 cm3/g, respectively, which is much larger than those of the IPC. The DSSCs with the scattering layer of MIPC film exhibited 18 and 10% higher photo-conversion efficiency than those of cells only with a nano-crystalline TiO2 film and with scattering layer of IPC film. From UV-visible spectra of dye solutions, the MIPC film showed a higher amount of absorbed dye molecules than those of the reference and IPC films. Accordingly, an increase in the photo-current density through abundant adsorption of the dye, coupled with inherent light scattering ability can improve overall photo-conversion efficiency.  相似文献   

7.
A TiO(2) nanotube layer with a periodic structure is used as a photonic crystal to greatly enhance light harvesting in TiO(2) nanotube-based dye-sensitized solar cells. Such a tube-on-tube structure fabricated by a single-step approach facilitates good physical contact, easy electrolyte infiltration, and efficient charge transport. An increase of over 50% in power conversion efficiency is obtained in comparison to reference cells without a photonic crystal layer (under similar total thickness and dye loading).  相似文献   

8.
A novel approach has been developed to fabricate hills-like hierarchical structured TiO2 photoanodes for dye-sensitized solar cells (DSSCs). The appropriately aggregated TiO2 clusters in the photoanode layer could cause stronger light scattering and higher dye loading that increases the efficiency of photovoltaic device. For detailed light-harvesting study, different molecular weights of polyvinyl alcohol (PVA) were used as binders for TiO2 nanoparticles (P-25 Degussa) aggregation. A series of TiO2 films with dissimilar morphology, the reflection of TiO2 films, absorbance of attached dye, amount of dye loading, and performance of fabricated DSSC devices, were measured and investigated. An optimized device had energy conversion efficiency of 4.47% having a higher dye loading and good light harvesting, achieving a 23% increase of short-circuit current J(sc) in DSSCs.  相似文献   

9.
We have recently fabricated dye-sensitized solar cells (DSSCs) comprising nanofibrous TiO(2) membranes as electrode materials. A thin TiO(2) film was pre-deposited on fluorine doped tin oxide (FTO) coated conducting glass substrate by immersion in TiF(4) aqueous solution to reduce the electron back-transfer from FTO to the electrolyte. The composite polyvinyl acetate (PVac)/titania nanofibrous membranes can be deposited on the pre-deposited thin TiO(2) film coated FTO by electrospinning of a mixture of PVac and titanium isopropoxide in N,N-dimethylformamide (DMF). The nanofibrous TiO(2) membranes were obtained by calcining the electrospun composite nanofibres of PVac/titania as the precursor. Spectral sensitization of the nanofibrous TiO(2) membranes was carried out with a ruthenium (II) complex, cis-dithiocyanate-N,N(')-bis(2,2(')-bipyridyl-4,4(')-dicarboxylic acid) ruthenium (II) dihydrate. The results indicated that the photocurrent and conversion efficiency of electrodes can be increased with the addition of the pre-deposited TiO(2) film and the adhesion treatment using DMF. Additionally, the dye loading, photocurrent, and efficiency of the electrodes were gradually increased by increasing the average thickness of the nanofibrous TiO(2) membranes. The efficiency of the fibrous TiO(2) photoelectrode with the average membrane thickness of 3.9?μm has a maximum value of 4.14%.  相似文献   

10.
Zhu K  Vinzant TB  Neale NR  Frank AJ 《Nano letters》2007,7(12):3739-3746
We report on the influence of morphological disorder, arising from bundling of nanotubes (NTs) and microcracks in films of oriented TiO2 NT arrays, on charge transport and recombination in dye-sensitized solar cells (DSSCs). Capillary stress created during evaporation of liquids from the mesopores of dense TiO2 NT arrays was of sufficient magnitude to induce bundling and microcrack formation. The average lateral deflection of the NTs in the bundles increased with the surface tension of the liquids and with the film thicknesses. The supercritical CO2 drying technique was used to produce bundle-free and crack-free NT films. Charge transport and recombination properties of sensitized films were studied by frequency-resolved modulated photocurrent/photovoltage spectroscopies. Transport became significantly faster with decreased clustering of the NTs, indicating that bundling creates additional pathways via intertube contacts. Removing such contacts alters the transport mechanism from a combination of one and three dimensions to the expected one dimension and shortens the electron-transport pathway. Reducing intertube contacts also resulted in a lower density of surface recombination centers by minimizing distortion-induced surface defects in bundled NTs. A causal connection between transport and recombination is observed. The dye coverage was greater in the more aligned NT arrays, suggesting that reducing intertube contacts increases the internal surface area of the films accessible to dye molecules. The solar conversion efficiency and photocurrent density were highest for DSSCs incorporating films with more aligned NT arrays owing to an enhanced light-harvesting efficiency. Removing structural disorder from other materials and devices consisting of nominally one-dimensional architectures (e.g., nanowire arrays) should produce similar effects.  相似文献   

11.
We report on the microstructure and dynamics of electron transport and recombination in dye-sensitized solar cells (DSSCs) incorporating oriented TiO2 nanotube (NT) arrays. The morphology of the NT arrays, which were prepared from electrochemically anodized Ti foils, were characterized by scanning and transmission electron microscopies. The arrays were found to consist of closely packed NTs, several micrometers in length, with typical wall thicknesses and intertube spacings of 8-10 nm and pore diameters of about 30 nm. The calcined material was fully crystalline with individual NTs consisting of about 30 nm sized crystallites. The transport and recombination properties of the NT and nanoparticle (NP) films used in DSSCs were studied by frequency-resolved modulated photocurrent/photovoltage spectroscopies. While both morphologies display comparable transport times, recombination was much slower in the NT films, indicating that the NT-based DSSCs have significantly higher charge-collection efficiencies than their NP-based counterparts. Dye molecules were shown to cover both the interior and exterior walls of the NTs. Analysis of photocurrent measurements indicates that the light-harvesting efficiencies of NT-based DSSCs were higher than those found for DSSCs incorporating NPs owing to stronger internal light-scattering effects.  相似文献   

12.
Park SW  Lee K  Lee DK  Ko MJ  Park NG  Kim K 《Nanotechnology》2011,22(4):045201
We have developed a facile method to position different dyes (N719 and N749) sequentially in a mesoporous TiO(2) layer through selective desorption and adsorption processes. From the selective removal of the only upper part of the first adsorbed dye, double-layered dye-sensitized solar cells have been successfully achieved without any damage to the dye. From the incident photon-to-current conversion efficiency (IPCE) measurement, the multi-layered dye-sensitized solar cell (MDSSC) was found to exhibit an expanded spectral response for the solar spectrum while maintaining the maximum IPCE value of each single-layered cell. The highest photocurrent density, 19.3 mA cm( - 2), was obtained from the MDSSC utilizing an N719/N749 bi-layered mesoporous TiO(2) film. The power conversion efficiency of 9.8% was achieved from the MDSSC, which is higher than that of single N719-or N749-based cells and cocktail-dyed (a mixture of N719 and N749) cells.  相似文献   

13.
The purpose of this study was to investigate the effects of size and phase composition on human exposure to airborne titanium dioxide (TiO(2)) nanoparticles (NPs) at workplaces. We reanalyzed published data of particle size distribution of airborne TiO(2) NPs during manufacturing activities and linked a physiologically based lung model to estimate size- and phase-specific TiO(2) NP burdens in target lung cells. We also adopted a cell model to simulate the exposure time-dependent size/phase-specific cell uptake of TiO(2) NPs in human dermal and lung cells. Combining laboratory, field, and modeling results, we proposed two major findings: (i) the estimated median effective anatase TiO(2) NP concentration (EC50) for cytotoxicity response on human dermal fibroblasts was estimated to be 24.84 (95% CI: 7.3-70.2) nmolmL(-1) and EC50 estimate for inflammatory response on human lung epithelial cells was 5414 (95% CI: 3370-7479) nmolmL(-1) and (ii) packers and surface treatment workers at the TiO(2) NP production workplaces are unlikely to pose substantial risk on lung inflammatory response. Nevertheless, our findings point out that TiO(2) NP production workers have significant risk on cytotoxicity response at relatively high airborne anatase TiO(2) NP concentrations at size range 10-30nm.  相似文献   

14.
Dye-sensitized photoelectrochemical solar cells made from nanocrystalline films of TiO(2) doped with copper and sensitized with indoline 149 dye are found to have impressively higher efficiencies compared to equivalent cells made from undoped films. The surface concentration of copper atoms on the TiO(2) where this effect is optimized is nearly the same as the concentration of dye molecules on the TiO(2) surface. Copper doping shifts the flat-band potential of TiO(2) in the negative direction, which is favorable for increasing the open-circuit voltage of the cell. It is suggested that in addition to the linkage of the carboxylate ligand of the dye to the TiO(2) surface, moieties in the rhodanine rings of the dye coordinate to the copper atoms on the TiO(2) surface. The coordination of the dye to copper seems to have a positive influence on the efficiency of the cell.  相似文献   

15.
A TiO2 heterostructure modified with carbon nitride nanosheets (CN-NSs) has been synthesized via a direct interfacial assembly strategy.The CN-NSs,which have a unique two-dimensional structure,were favorable for supporting TiO2 nanoparticles (NPs).The uniform dispersion of TiO2 NPs on the surface of the CN-NSs creates sufficient interfacial contact at their nanojunctions,as was confirmed by electron microscopy analyses.In comparison with other reported metal oxide/CN composites,the strong interactions of the ultrathin CN-NSs layers with the TiO2 nanoparticles restrain their re-stacking,which results in a large specific surface area of 234.0 m2·g-1.The results indicate that the optimized TiO2/CN-NSs hybrid exhibits remarkably enhanced photocatalytic efficiency for dye degradation (with k of 0.167 min-1 under full spectrum) and H2 production (with apparent quantum yield =38.4% for,λ =400 ± 15 nm monochromatic light).This can be ascribed to the improved surface area and quantum efficiency of the hybrid,with a controlled ratio that reaches the appropriate balance between producing sufficient nanojunctions and absorbing enough photons.Furthermore,based on the identification of the main active species for photodegradation,and the confirmation of active sites for H2 evolution,the charge transfer pathway across the TiO2/CN-NSs interface under simulated solar light is proposed.  相似文献   

16.
The recent technological advancements of the Dye Sensitized Solar Cells (DSSCs) fabrication technology is gaining momentum as a low cost and simple fabrication technology to convert solar energy into electric energy. A systematic study of the DSSC fabrication procedure and its influence on the cell efficiency are presented in this paper. Preparation of the titanium dioxide (TiO2) layer on the working electrode was the most significant process improvement made to enhance cell efficiency. The Coatema tool was used to develop an automated TiO2 coating process, which yielded layer thicknesses with minimum micro cracks and repeatable TiO2 weight loading in the range of 8-13 microm. Secondary process improvements implemented were: vacuum drying step for the TiO2 layer, dilution ratio of the sensitized dye and sealant thickness. These optimized cell fabrication steps enhanced cell efficiencies over 200% and reduced total process time. The work in progress demonstrated higher cell efficiency slightly greater than 9% by reducing the cell size using the optimized fabrication process described in this paper. We are confident that higher efficiency cells can be fabricated with this optimized fabrication process illustrated in this paper.  相似文献   

17.
Mesoporous anatase TiO2 nanotubes (NTs) with the diameter of about 7 12 nm and the length of several hundred nanometers were synthesized by a hydrothermal method on commercial TiO2 particles in NaOH followed by HCI washing. The samples were characterized by X-ray diffraction (XRD), transmitting electron microscopy (TEM), and Brunauer-Emmet-Teller (BET) measurements. The hydrothermal treatment temperature at 130 degrees C was shown to affect not only the extent of particle-to-sheet conversion, and thus the resulting structures of the NTs, but also the anatase-to-rutile transformation. The surface area of the NTs was 200 m2g(-1). This value was much higher in comparison to TiO2 nanoparticles of 50 m2g(-1). It was also found that the NT photoelectrodes had a pronounced impact on the performance of solar cells as compared to nanoparticle ones. This was probably due to lead to a significantly higher specific dye loading and, for certain hydrothermal treatments, resulting in a doubling of the solar cell efficiency (in our case from 2.84% to 4.03% of AM 1.5 conditions).  相似文献   

18.
Three-dimensional (3D) urchin-like rutile TiO2 powders were synthesized by a mild hydrothermal method without any templates. An individual urchin-like TiO2 powder consists of self-assembled nanorods with a length of about 150 nm and width of about 10 nm. Additionally, the urchin-like TiO2 nanopowders were coated with an ultra-thin ZnO layer in order to modify the surface properties of the nanopowders, and the ZnO layer was confirmed by high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS) analysis. The ZnO-modified TiO2 was used as a photoelectrode of a dye-sensitized solar cell (DSSC) and the solar cell performances were investigated. In comparison with bare TiO2, ZnO-modified TiO2 improved the photovoltaic performances, i.e., energy conversion efficiency, open circuit voltage, and short circuit current were increased. The higher DSSC performance of ZnO-modified TiO2 was attributed to its higher dye loading and lower charge recombination rate.  相似文献   

19.
光导电极材料在染料敏化太阳能电池(DSSC)中起到关键作用,直接影响到太阳能电池的总效率,所以一直是DSSC研究的热点.介绍了DSSC的基本工作原理,概述了当前DSSC中最流行的TiO<,2>和ZnO两种薄膜光导电极材料的制备方法,并从结构、工艺和转换效率等方面对染料敏化TiO<,2>薄膜太阳能电池和染料敏化ZnO薄膜太阳能电池进行了介绍和讨论;同时简要介绍了目前研究非常热门的叠层染料敏化太阳电池的研究进程,最后展望了染料敏化太阳能电池的未来发展前景.  相似文献   

20.
The rapid manufacturing of high-efficiency dye-sensitized solar cells (DSSCs) is limited by the slow dye adsorption on TiO2 nanoparticles (NPs)-accumulated photoelectrode using conventional dip-coating process. Therefore, we aim to accelerate the adsorption of dyes that are attached on TiO2 NPs by employing an aerosol impactor. Herein the aerosolized dyes are designed to get deposited rapidly on the TiO2 NPs-accumulated photoelectrode. In addition, to effectively trap the irradiated sunlight in DSSCs, we assemble the photoelectrodes incorporated with bilayered TiO2 thin films comprising small TiO2 NPs-based underlayer and large TiO2 NPs-based overlayer as dye-supporting and light-scattering mediums, respectively. Furthermore, the effects of dye aerosol impaction and TiO2 stacking structures on the efficiency of DSSCs are examined. The power conversion efficiency (PCE) of DSSCs comprising a N719 dye-supporting layer treated with dip-coating process was determined as ~ 5.67%; however, when the bilayered TiO2 thin films with an optimized thickness ratio of light-scattering overlayer and dye-supporting underlayer were coated with N719 dyes using dye aerosol impactor, the resulting PCE increased to ~ 7.46%. This suggests that the photovoltaic characteristics of DSSCs can be enhanced considerably using the effective TiO2 NP stacking structures coated with rapid, uniform, and strong aerosol dye adsorption throughout the TiO2-based photoelectrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号