共查询到20条相似文献,搜索用时 10 毫秒
1.
Summary The interaction parameters B for blends of poly(vinylidene fluoride) (PVDF) with poly(methyl methacrylate) (PMMA), poly(ethyl methacrylate) (PEMA) and five methyl methacrylate/ ethyl methacrylate copolymers (PMEMA) were determined by measurements of melting point depression of PVDF. The B values are negative, indicating an attractive intermolecular interaction. The intramolecular interaction parameter between MMA and EMA segments in PMEMA was found to be +3.25 cal/cm3, indicating a repulsive interaction between different monomer segments in the copolymer. 相似文献
2.
Highly oriented melt drawn films of poly(vinylidene fluoride) (PVDF) and blends of poly(vinylidene fluoride) and poly(methyl methacrylate) (PMMA) have been studied by transmission electron microscopy, electron diffraction and infra-red spectroscopy. Infra-red spectra show the second moment of the orientation function for PVDF samples to be greater than 0.94. Using such a sample, the transition dipole directions relative to the chain axis have been calculated. Electron microscopic studies of the PVDF/PMMA blends show a transformation for pure PVDF from a lamellar morphology to a mixture of lamellar and needle-like crystals for the 80/20 blend. The 60/40 blend shows a pure needle-like morphology. The β phase content for this blend is dependent upon the composition and thermal history. An increase in the β phase content is observed with the addition of PMMA. After annealing at 110°C, the 50/50 blend shows a lamellar β phase morphology. A significant increase in the segmental orientation of PVDF is also observed. 相似文献
3.
A polydimethylsiloxane‐block‐poly(methyl methacrylate) (PDMS‐b‐PMMA) diblock copolymer was synthesized by the atom transfer radical polymerization method and blended with a high‐molecular‐weight poly(vinylidene fluoride) (PVDF). In this A‐b‐B/C type of diblock copolymer/homopolymer system, semi‐crystallizable PVDF (C) and PMMA (B) block are miscible due to favorable intermolecular interactions. However, the A block (PDMS) is immiscible with PVDF and therefore generates nanostructured morphology via self‐assembly. Crystallization study reveals that both α and γ crystalline phases of PVDF are present in the blends with up to 30 wt% of PDMS‐b‐PMMA block copolymer. Adding 10 wt% of PVDF to PDMS‐b‐PMMA diblock copolymer leads to worm‐like micelle morphology of PDMS of 10 nm in diameter and tens of nanometers in length. Moreover, morphological results show that PDMS nanostructures are localized in the inter‐fibrillar region of PVDF with the addition of up to 20 wt% of the block copolymer. Increase of PVDF long period by 45% and decrease of degree of crystallization by 34% confirm the localization of PDMS in the PVDF inter‐fibrillar region. © 2018 Society of Chemical Industry 相似文献
4.
A dynamic mechanical study of four blends of PVdF and PMMA plus the constituent homopolymers indicates that these two polymers are partly compatible, but that a crystalline PVdF phase also exists. The pure PVdF sample showed four transitions at ?95°, ?25° 75° and 100°C which are ascribed to a restricted chain motion of the Schatzki type, to a crystalline phase transition, to the glass transition and to premelting of poorly formed crystallites respectively. A longitudinal sonic velocity versus composition plot is interpreted in terms of the overall morphology of the blends whilst differential scanning calorimetry measurements are used to study crystalline melting. 相似文献
5.
Jing Cheng Shichao Wang Shuangjun Chen Jun Zhang Xiaolin Wang 《Polymer International》2012,61(3):477-484
Ternary blends composed of matrix polymer poly(vinylidene fluoride) (PVDF) with different proportions of poly(methyl methacrylate) (PMMA)/poly(vinyl pyrrolidone) (PVP) blends were prepared by melt mixing. The miscibility, crystallization behavior, mechanical properties and hydrophilicity of the ternary blends have been investigated. The high compatibility of PVDF/PMMA/PVP ternary blends is induced by strong interactions between the carbonyl groups of the PMMA/PVP blend and the CF2 or CH2 group of PVDF. According to the Fourier transform infrared and wide‐angle X‐ray difffraction analyses, the introduction of PMMA does not change the crystalline state (i.e. α phase) of PVDF. By contrast, the addition of PVP in the blends favors the transformation of the crystalline state of PVDF from non‐polar α to polar β phase. Moreover, the crystallinity of the PVDF/PMMA/PVP ternary blends also decreases compared with neat PVDF. Through mechanical analysis, the elongation at break of the blends significantly increases to more than six times that of neat PVDF. This confirms that the addition of the PMMA/PVP blend enhances the toughness of PVDF. Besides, the hydrophilicity of PVDF is remarkably improved by blending with PMMA/PVP; in particular when the content of PVP reaches 30 wt%, the water contact angle displays its lowest value which decreased from 91.4° to 51.0°. Copyright © 2011 Society of Chemical Industry 相似文献
6.
7.
Previous work has shown evidence that PMMA and PEMA are miscible with PVF2. The present paper examines in detail the behavior of PEMA/PVF2 blends by thermal analysis and dynamic mechanical testing. All transitions and relaxations are affected by blond composition but in a complex manner owing to the crystallization of PVF2 from blends rich in this component. Inadequacies of the simple two-phase picture of semi-crystalline polymers is believed responsible for some of the transitional behavior observed here. The melting point depression observed for PVF2 was found to be consistent with an exothermic heat of mixing for this pair comparable in value to that found for PPMA/PVF2/All evidence here are consistent with the previous conclusion of miscibility for these systems. 相似文献
8.
The role of the single diluents and mixed diluents on the poly (vinylidene fluoride) (PVDF)/poly(methyl methacrylate) (PMMA) blend membranes via thermally induced phase separation (TIPS) process was investigated. The crystallization behaviors of PVDF in the diluted samples were examined by differential scanning calorimetry. The melting and crystallization temperatures of those diluted PVDF blend were decreased with the enhanced interactions between polymer chains and diluent molecules. The crystallinity of PVDF in the diluent was always higher than that obtained in PVDF blend sample. This can be explained by the dilution effects, which increased the average spatial separation distances between crystallizable chains. Thus, the PVDF crystallization was favored. Additionally, solid‐liquid (S‐L) phase separation occurred in the quenched samples. Illustrated by scanning electron microscopy, inter‐ and intraspherulitic voids were formed in the ultimate membranes, which related to the polymer/diluent interactions, the kinetics of crystallization and diluent rejection from the growing crystal. The porosity of the PVDF blend membranes obtained from the mixed diluents was higher than those obtained from the single diluent samples. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
9.
The miscibility of C60‐containing poly(methyl methacrylate) (PMMA‐C60) with poly(vinylidene fluoride) (PVDF) was studied. Two PMMA‐C60 samples containing 2.6 and 7.4 wt % C60 were found to be miscible with PVDF based on single glass transition temperature criterion and melting point depression of PVDF. However, the interaction parameters of the two blend systems are less negative than that of the PMMA/PVDF blend system, showing that the incorporation of C60 reduces the ability of carbonyl groups of PMMA to interact with PVDF. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1393–1396, 2000 相似文献
10.
Blends of poly(vinylidene fluoride) (PVDF) and silicone rubber (SR) were prepared through melt mixing. The morphology, rheology, crystallization behavior, mechanical properties, dynamic mechanical properties and thermal properties of the PVDF/SR blends were investigated. The blend with 9 wt % of SR showed spherical shape of disperse phase whereas the blend with 27 wt % of SR resulted in irregular shape of rubber phase. The rheology showed that the complex viscosity and storage modulus of the blends decreased with increasing the SR content. The mechanical properties of the blends were decreased with increasing the SR content but that were significantly improved after dynamical vulcanization. The crystallization temperature of PVDF phase in PVDF/SR blends was increased. The incorporation of SR improved the thermal stability of PVDF/SR blends, and the temperature at 10% mass loss of the blends increased to about 489°C compared with 478°C of the pure PVDF. The mass of residual char in experiment of the blends was lower than that obtained in theory. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39945. 相似文献
11.
Sanjay Remanan Sabyasachi Ghosh Tushar Kanti Das Maya Sharma Madhuparna Bose Suryasarathi Bose Amit Kumar Das Narayan Chandra Das 《应用聚合物科学杂志》2020,137(27):48677
Herein, phase inversion poly(vinylidene fluoride)/poly(methyl methacrylate) (PVDF/PMMA) microporous membranes were prepared at various PMMA concentration by immersion precipitation method. Increment in the PMMA concentration has a significant influence in the PVDF membrane crystallinity, which is studied by differential scanning calorimeter, X-ray diffractometer, and small-angle X-ray scattering analyses. Properties such as membrane bulk structure, porosity, hydrophilicity, mechanical stability, and water flux vary in terms of PMMA concentration. Porosity is increased, and tensile strength decreased when PMMA concentration is beyond 30 wt %. Thermodynamic instability during the liquid to solid phase separation and variation in the crystallinity has an intense effect on these membrane properties. Then, 70/30 blend membrane selected as optimum composition owing to the high porosity and pure water flux compared to other compositions. This membrane is modified with a composite filler derived from the graphene oxide and titanate crosslinked by chitosan. The antibacterial, antifouling, and bovine serum albumin separation studies reveal that the developed nanocomposite membrane is a potential candidate for the separation application. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 137, 48677. 相似文献
12.
Enzo Benedetti Stefano Catanorchi Aldo DAlessio Piergiorgio Vergamini Francesco Ciardelli Mariano Pracella 《Polymer International》1998,45(4):373-382
Films of blends of poly(vinylidene fluoride) (PVDF) with isotactic and syndiotactic poly(methyl methacrylate) (i-PMMA and s-PMMA), obtained by casting tetrahydrofuran (THF) and dimethyl sulphoxide (DMSO) solutions onto BaF2 windows, have been investigated by means of FTIR-microspectroscopy (FTIR-M), optical microscopy and differential scanning calorimetry (DSC). The study of the effect of the PMMA tacticity on the intermolecular interaction between the two components, as well as on the structure, morphology and thermal behaviour of these blends, is the object of this paper. On the basis of the major shift of the carbonyl band of i-PMMA in the mixtures, the occurrence of stronger interactions for PVDF/i-PMMA compared with PVDF/s-PMMA blends can be suggested. © 1998 SCI. 相似文献
13.
Ternary blends composed of matrix polymer poly(vinylidene fluoride) (PVDF) with different proportions of poly(methyl methacrylate) (PMMA)/poly(vinyl pyrrolidone) (PVP) blends were prepared by solution casting. The crystallization behavior and hydrophilicity of ternary blends were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), wide angle X‐ray diffraction (WAXD), differential scanning calorimetry (DSC), and contact angle test. According to morphological analysis, the surface was full of typical spherulitic structure of PVDF and the average diameter was in the order of 3 μm. The samples presented predominantly β phase of PVDF by solution casting. It indicated that the size of surface spherulites and crystalline phase had little change with the PMMA or PVP addition. Moreover, FTIR demonstrated special interactions among the ternary polymers, which led to the shift of the carbonyl stretching absorption band of PVP. On the other hand, the melting, crystallization temperature, and crystallinity of the blends had a little change compared with the neat PVDF in the first heating process. Except for the content of PVP containing 30 wt %, the crystallinity of PVDF decreased remarkably from 64% to 33% and the value of t1/2 was not obtained. Besides, the hydrophilicity of PVDF was remarkably improved by blending with PMMA/PVP, especially when the content of PVP reached 30 wt %, the water contact angle displayed the lowest value which decreased from 98.8° to 51.0°. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
14.
An approach to achieve confined crystallization of ferroelectric semicrystalline poly(vinylidene fluoride) (PVDF) was investigated. A novel polydimethylsiloxane‐block‐poly(methyl methacrylate)‐block‐polystyrene (PDMS‐b‐PMMA‐b‐PS) triblock copolymer was synthesized by the atom‐transfer radical polymerization method and blended with PVDF. Miscibility, crystallization and morphology of the PVDF/PDMS‐b‐PMMA‐b‐PS blends were studied within the whole range of concentration. In this A‐b‐B‐b‐C/D type of triblock copolymer/homopolymer system, crystallizable PVDF (D) and PMMA (B) middle block are miscible because of specific intermolecular interactions while A block (PDMS) and C block (PS) are immiscible with PVDF. Nanostructured morphology is formed via self‐assembly, displaying a variety of phase structures and semicrystalline morphologies. Crystallization at 145 °C reveals that both α and β crystalline phases of PVDF are present in PVDF/PDMS‐b‐PMMA‐b‐PS blends. Incorporation of the triblock copolymer decreases the degree of crystallization and enhances the proportion of β to α phase of semicrystalline PVDF. Introduction of PDMS‐b‐PMMA‐b‐PS triblock copolymer to PVDF makes the crystalline structures compact and confines the crystal size. Moreover, small‐angle X‐ray scattering results indicate that the immiscible PDMS as a soft block and PS as a hard block are localized in PVDF crystalline structures. © 2019 Society of Chemical Industry 相似文献
15.
Minho Lee Taesang Koo Seongho Lee Byong Hun Min Jeong Ho Kim 《Polymer Composites》2015,36(7):1195-1204
Nanocomposites of blends of poly(vinylidene fluoride) (PVDF) and poly(methyl methacrylate) (PMMA) with multiwalled carbon nanotubes (CNTs) were prepared by melt mixing and hot press molding followed by quenching or annealing (120°C, 24 h). PMMA‐rich nanocomposites showed higher electrical conductivity than PVDF‐rich samples at identical CNT loading. At a specific composition, the quenched nanocomposites showed electrical conductivity values three to four orders of magnitude higher than those observed in annealed samples. Measurement of the dielectric constants also supported the electrical conductivity results. In the annealed samples, agglomerated CNTs located mainly in the PVDF crystalline phase were observed. Addition of CNTs promoted the crystallization, and especially, the formation of β‐crystals, which was confirmed by X‐ray diffraction. The thermal behavior of nanocomposites from differential scanning calorimetry (DSC) analysis was explained in terms of the three‐phase model involving the presence of the rigid amorphous fraction, the mobile amorphous fraction, and the crystalline phase. POLYM. COMPOS., 36:1195–1204, 2015. © 2014 Society of Plastics Engineers 相似文献
16.
Rinaldo Gregorio Matheus Rigobelo Chaud Wilson Nunes Dos Santos Joo Baptista Baldo 《应用聚合物科学杂志》2002,85(7):1362-1369
This study presents an investigation of the effect of the different crystalline phases of each blend component on miscibility when blending poly(vinylidene fluoride) (PVDF) and its copolymer poly[(vinylidene fluoride)‐ran‐trifluorethylene] [P(VDF–TrFE)] containing 72 mol % of VDF. It was found that, when both components crystallized in their ferroelectric phase, the PVDF showed a strong effect on the crystallinity and phase‐transition temperature of the copolymer, indicating partial miscibility in the crystalline state. On the other hand, immiscibility was observed when both components, after melting, were crystallized in their paraelectric phase. In this case, however, a decrease in crystallization temperatures suggested a strong interaction between monomers in the liquid state. Blend morphologies indicated that, in spite of the lack of miscibility in the crystalline state, there is at least miscibility between PVDF and P(VDF–TrFE) in the liquid state, and that a very intimate mixture of the two phases on the lamellar level can be maintained upon crystallization. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1362–1369, 2002 相似文献
17.
18.
Jing‐hui Yang Chen‐xia Feng Hai‐ming Chen Nan Zhang Ting Huang Yong Wang 《Polymer International》2016,65(6):675-682
In this work, a mutually miscible third polymer, poly(methyl methacrylate) (PMMA), was incorporated into an immiscible poly(vinylidene fluoride)/polylactide (PVDF/PLA) blend (weight ratio 70:30). It was found that incorporation of PMMA in an appropriate amount (30–60 wt%) induced a marked improvement in fracture toughness. A five times enlargement of the elongation at break can be achieved by introducing 30 wt% PMMA. In order to understand the underlying toughening mechanism, SEM, dynamic mechanical analysis (DMA), XRD and DSC were applied to study the variations in morphology, the interaction between the three components and the crystallization behavior. SEM micrographs showed that the PMMA preferred to locate at the interface of PVDF and PLA, which was attributed to the mutual miscibility of PVDF with PMMA and PLA. Furthermore, a variety of thermal characteristics such as Tg and Tm induced by the entanglement of PVDF, PMMA and PLA at the interface were illustrated in DMA and DSC curves. Obviously, the interface consisting of the entanglement of PVDF, PLA and PMMA acted as a linkage to improve interfacial adhesion, which was regarded as the main toughening mechanism. This work provides a potential strategy to realize the interfacial enhancement of an immiscible blend via the incorporation of a mutually miscible third polymer. © 2016 Society of Chemical Industry 相似文献
19.
Feather‐like morphology of poly(methyl methacrylate)/poly(ethylene oxide) blends: The effect of cooling rate and poly(methyl methacrylate) content 下载免费PDF全文
The effect of cooling rate on the crystallization morphology and growth rate of poly(ethylene oxide) (PEO) and PEO/poly(methyl methacrylate) (PMMA) blends has been observed by Hot Stage Polarized Microscopy (HS‐POM). The isothermal crystallization kinetics study was carried out by differential scanning calorimetry (DSC). The spherulite morphology has been observed for the neat PEO with molecular weight of 6000 g/mol. By adding of PMMA with molecular weight of 39,300 g/mol, the growth fronts become irregular. With the increasing of PMMA content, the irregularity of growth front becomes more obvious, and the feather‐like morphology can be observed. When PMMA content is 60%, the spherulite is seriously destroyed. This phenomenon is more obvious for the slow cooling process. Based on the measurement of spherulite, the growth rate curves were obtained. According to the curves, it can be seen that the growth rate decreases with the increasing of PMMA content, and the growth rate during the slow cooling process is higher than that of the fast cooling process. The isothermal crystallization experiment indicates that the crystallization rate decreases dramatically with the increasing of PMMA content. And the Avrami parameter n was obtained, which is non‐integral and less than 3. Finally, it can be concluded that the higher value of n can be obtained for the condition with low crystallization rate. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41705. 相似文献
20.
Poly(vinylidene fluoride), PVF2, as well as blends of PVF2 with poly(methyl methacrylate), PMMA, develop a variety of crystalline morphologies at low undercoolings. Both the α and γ crystal forms grow from the melt and the former undergoes a solid-solid phase transition to the latter, though its morphology remains unaltered. Three melting temperatures which decrease with increasing PMMA content are observed. Hoffman-Weeks analysis shows the equilibrium melting points of the blends to be depressed. Using these equilibrium values, the thermodynamic interaction energy density is calculated to go from ?5.40 × 106 to ?2.96 × 107 j/m3 as the blend composition goes from 40.1 volume percent to pure PVF2. The band periodicity in the α form spherulites increases with crystallization temperature and PMMA content and it appears to be from a lamellar reorientation process with an apparent activation energy of 322 cal/mole. Electron diffraction patterns taken along the radial direction in a given spherulite reveal lamellar twisting which causes the banded appearance. Light scattering results suggest that the lamellar are formed into rod-like structures on a local scale but that on a larger scale they develop a disoriented spherulitic morphology. 相似文献