首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
以均苯四甲酸酐和乙醇胺为原料合成二羟基均苯酰亚胺(HEPMI);以HEPMI为扩链剂,聚氧化丙烯二醇(PPG-2000)、异氟尔酮二异氰酸酯(IPDI)、二羟甲基丙酸(DMPA)、一缩二乙二醇(DEG)为主要原料,制备了阴离子型水性聚氨酯-酰亚胺(WPUI)乳液,利用FTIR、DSC、TGA、拉伸测试表征了聚合物的结构和性能,考察了HEPMI含量对WPUI乳液及胶膜性能的影响。结果表明,随着HEPMI含量的增多,WPUI乳液粒径逐渐增大,聚合物的软硬段的玻璃化转变温度提高,胶膜硬段的耐热性能略有下降,软段的耐热性能明显提高,胶膜的机械性能先增大后减小;当HEPMI的质量含量为2%时,胶膜的综合性能最优,乳液粒径45.2 nm,胶膜5%和50%的热分解温度为282,380℃,拉伸强度达到21.5 MPa,断裂伸长率为667%。  相似文献   

2.
用磺酸型亲水扩链剂制备高固含量聚氨酯乳液   总被引:3,自引:0,他引:3  
以聚(四氢呋喃-co-氧化丙烯)二醇为软段、异佛尔酮二异氰酸酯为硬段,以1,2-二羟基-3-丙磺酸钠(DHPA)作为亲水扩链剂,用自乳化法合成了一系列稳定的高固含量聚氨酯乳液,分析了DHPA用量对乳液及其胶膜性能的影响。结果表明:所得聚氨酯乳液的粒径呈多元分布,乳胶粒子呈球形;乳液为假塑性流体;随着DHPA用量的增加,乳液平均粒径逐渐减小,粒径分布变窄,固含量不断增大,当DHPA质量分数为7%时,乳液的总固物质量分数可达61%。乳液具有较好的高、低温及贮存稳定性能。随着DHPA用量的增加,聚氨酯乳液胶膜的拉伸强度逐渐增大,扯断伸长率则先增大后减小;当DHPA质量分数为5%时胶膜的综合力学性能最佳;DHPA用量对胶膜的热稳定性没有明显影响。  相似文献   

3.
磺酸型水性聚氨酯乳液制备工艺的研究   总被引:1,自引:0,他引:1  
以聚氧化丙烯二醇(N210)和2,4-甲苯二异氰酸酯(TDI)为原料.以自制的磺酸型亲水单体1,2-二羟基-3-丙磺酸钠(DHPA)作为扩链剂,制备r磺酸型水性聚氨酯乳液;通过性能测试,研究了R[n(-NCO):n(-OH)]值、DHPA含量对乳液及胶膜力学性能的影响,并通过红外光谱对产物的结构进行了表征.结果表明,随着R值的增大,乳液的黏度下降.胶膜的拉伸强度增大,断裂伸长率下降;当R=2时,随着DHPA含量的增加,乳液的平均粒径变小,乳液的稳定性逐渐增强,胶膜的拉伸强度逐渐增大,断裂伸长率则先增大后减小;当DHPA含昔为5%时,胶膜的力学性能最佳;性能测定表明:采用分散和中和同时进行的方式,制备的水性聚氨酯乳液综合性能较好.  相似文献   

4.
以氢化苯基甲烷二异氰酸酯(H-MDI)、聚氧乙烯长链烷基胺(PAE)、二羟甲基丙酸(DMPA)为主要原料,合成了一系列侧链含长链烷基和羧基、主链嵌入环氧乙烷(EO)结构的两性离子型聚氨酯表面活性剂(APU)。通过红外光谱(FTIR)、表面张力、临界胶束浓度、粒径以及电导率对其进行了分析。结果表明,当以PAE为软段单体,n(PAE)∶n(DMPA)=1∶1时,合成的聚氨酯高分子表面活性剂综合性能优异,溶液的临界胶束质量浓度为32.26 mg/L,水溶液的表面张力最低可达40.42 m N/m,且其等电区为3.5~5.5,分布较窄,可在较宽p H范围的水性体系中使用。  相似文献   

5.
本文以耐高温型聚酯二元醇(NCL),4,4''-二环己基甲烷二异氰酸酯(HMDI),甲基丙烯酸甲酯(MMA)为主要原料,并同时采用羧酸型亲水扩链剂以及磺酸型亲水扩链剂,通过无有机溶剂法制备了满足烟盒包装行业要求的零挥发性有机物(VOC)、无三乙胺的耐高温型水性聚氨酯-丙烯酸酯(WPUA1~6)乳液。通过FTIR、TEM、粒径分析仪、TGA等考察了WPUA乳液及其胶膜的结构和性能。探讨了聚二元醇种类、异氰酸酯种类和扩链剂种类对胶膜热稳定性的影响。结果表明:加入乙二胺基乙磺酸钠(AAS)后乳液的平均粒径都减小。当热失重率分别为20%,30%,50%时,以耐高温NCL,HMDI和对苯二酚双(β-乙基)醚(HQEE)为原料合成的WPUA5胶膜热稳定性比以聚己内酯二元醇(PCL),异佛尔酮二异氰酸酯(IPDI)和1,4-丁二醇(BDO)为原料合成的WPUA2胶膜热分解温度分别提高了60.96、69.37和139.70℃。随着WPUA5分子的对称性增强,聚合物的结晶性增强,玻璃化转变温度(Tg)也增大  相似文献   

6.
采用蓖麻油、异佛尔酮二异氰酸酯(IPDI)、聚己内酯二元醇(PCL)和1,4-丁二醇(BDO)为主要原料,以乙二胺基乙磺酸钠(AAS)为亲水基,合成了一系列由蓖麻油改性的磺酸型水性聚氨酯乳液,并固化成膜。通过FT-IR、粒径测试、吸水率与接触角测定、力学性能测定、TG等手段研究了蓖麻油含量对水性聚氨酯乳液与胶膜的影响。结果表明:蓖麻油成功接入聚氨酯分子主链中;随着蓖麻油含量的增加,乳液粒径逐渐增大;胶膜的吸水率先减小后增大,接触角先增大后减小,拉伸强度先增大后减小,断裂伸长率逐渐减小。当蓖麻油与PCL质量比为0.5时,胶膜吸水率最小,接触角最大,为95.18°,拉伸强度最大,为15.15 MPa,综合性能最好。通过TGA表明,蓖麻油的引入,胶膜的耐热性也有所提高。  相似文献   

7.
硅烷偶联剂改性水性聚氨酯的合成与性能研究   总被引:3,自引:0,他引:3  
以聚醚210、异佛尔酮二异氰酸酯(IPDI)为主要原料,二羟甲基丙酸(DMPA)为亲水性扩链剂,胺类硅烷偶联剂为后扩链剂,按不同配比合成了系列有机硅改性水性聚氨酯分散体。主要考察了硅烷偶联剂质量分数对水性聚氨酯乳液的稳定性、乳液粒径以及胶膜吸水性和耐热性的影响。结果表明,随硅烷偶联剂质量分数的增加,乳液粒径增大,分散稳定性良好,胶膜的耐水性明显提高;胶膜的耐热性能明显提高,并且发生了交联反应;胶膜的ATR红外显示体系中形成的脲键随硅烷偶联剂的质量分数增加而增多。  相似文献   

8.
磺酸型亲水单体扩链制备水性聚氨酯的研究   总被引:2,自引:0,他引:2  
以聚氧化丙烯二醇(N210)和2,4-甲苯二异氰酸酯(TDI)为原料,以自制的磺酸型亲水单体1,2-二羟基-3-丙磺酸钠(DHPA)作为扩链剂,制备了磺酸型水性聚氨酯乳液;研究了R(NCO/OH)值、DHPA含量对乳液及胶膜力学性能的影响,通过红外光谱对产物的结构进行了表征。结果表明,随着R值的增大,乳液的黏度下降,胶膜的拉神强度增大,断裂伸长率下降;同时,当R为2时,随着DHPA的增加,乳液的平均粒径变小,乳液的稳定性逐渐增强,胶膜的拉伸强度逐渐增大,断裂伸长率则先增大后减小。当DHPA为5%时,胶膜的力学性能最佳。  相似文献   

9.
以聚醚二元醇(N210)和2,4-甲苯二异氰酸酯(TDI)为原料,以自制的磺酸型亲水单体1,2-二羟基-3-丙磺酸钠(DHPA)作为扩链剂,制备了磺酸型水性聚氨酯(WPU)乳液;研究了R值[即R=n(-NCO)/n(-OH)]、DHPA含量对WPU乳液及其胶膜力学性能的影响,并对产物的结构进行了红外光谱(FT-lR)表征.研究结果表明,随着R值的增大,WPU乳液粘度下降,胶膜的拉伸强度和硬度增大、断裂伸长率和吸水率下降;随着DHPA含量的增加,WPU乳液的稳定性逐渐增强、粒径变小且粒径分布变窄,WPU胶膜的拉伸强度增大、断裂伸长率则呈先增后降的趋势;当R=2.0、wDHPA)=5%时,WPU的综合性能最好.  相似文献   

10.
聚氨酯缔合型增稠剂的合成及性能研究   总被引:2,自引:0,他引:2  
将异佛尔酮二异氰酸酯和聚乙二醇反应获得预聚体,用1,6-己二醇扩链,并用长链烷基醇封端,最终获得内部含有疏水链段的聚氨酯缔合型增稠剂(HEUR)。采用FT-IR和1H NMR对HEUR的结构进行了表征;通过黏度测定,着重研究了相对分子质量及其分布、疏水链段的位置和大小对增稠效果的影响,同时分析了增稠剂的加入对苯丙乳液粒径及其分布的影响。结果表明:当末端疏水链一定时,增加亲水链长度,有助于黏度的提高;相同浓度下,相对分子质量分布窄的样品比分布宽的样品增稠效果好;分子内部疏水链段会使黏度降低,同时会使乳液粒径增大,乳液黏度的大小完全由增稠剂分子末端疏水链以及增稠剂的用量控制。  相似文献   

11.
水性聚氨酯/硅溶胶复合涂层的制备与性能   总被引:1,自引:0,他引:1  
将水性聚氨酯乳液与硅溶胶共混,制备了水性聚氨酯/硅溶胶复合乳液。采用TEM、激光粒度分析仪、流变仪、ATR-FTIR、TG对复合乳液及其涂膜进行表征,探讨了硅溶胶用量对复合涂膜性能的影响。ATR-FTIR分析表明,聚氨酯分子和硅溶胶之间可以形成氢键,但不存在化学键结合;TEM、激光粒度分析测试表明,硅溶胶质量分数的增加,使复合乳液粒子粒径增大,粒度分布变宽,当硅溶胶质量分数20%后,乳胶粒子间易发生团聚;流变分析发现,加入硅溶胶后,乳液的表观黏度(ηa)增大,假塑性增强。性能测试结果表明,硅溶胶质量分数20%时,复合乳液具有好的储存稳定性,复合涂膜表现出很好的热稳定性,48 h吸水率仅为18.94%,同时表现出很好的耐溶剂性能,拉伸强度达到28.98 MPa,铅笔硬度达2H,附着力0级。  相似文献   

12.
采用原位合成法制备了聚氨酯-聚丙烯酸酯(PUA)复合乳液,通过FTIR,TEM,激光力度分析仪及耐水性分析讨论了R(n(NCO):n(OH)),亲水性扩链剂含量、稀释剂用量以及乳化剂含量对PUA复合乳液及涂膜性能的影响。研究结果表明。R太大或太小都会导致乳液外观和稳定性变差,粒径增大,吸水率提高;DMPA含量增加有利于乳液稳定性提高,粒径也会减小。但是对涂膜的吸水性增加;稀释剂的加入可以改善乳液分散性,提高乳液稳定性;而乳化剂用量增加时,复合乳液粒径减小,粒径分布变窄,耐水性变差。  相似文献   

13.
HDI-PBA-DMPA聚氨酯乳液的性能研究   总被引:2,自引:0,他引:2  
以 HDI、PBA、DMPA为原料合成了阴离子型聚氨酯乳液 ,研究了乳液及其胶膜的性能 ,讨论了Ca2 +对胶膜耐水性的影响 ,并与 TDI-PBA-DMPA体系进行比较。结果表明 ,在相同配比下 ,HDI-PBA-DMPA体系 PU乳液的粒径大于 TDI-PBA-DMPA体系 ;同时 ,前者所成胶膜的拉伸强度小于后者 ,断裂伸长率大于后者。Ca2 + 能使 PU乳液迅速沉聚 ,并可提高胶膜的耐水性。初步评价了该体系在墙体保护涂饰方面应用的价值  相似文献   

14.
本文观察了烷基酚聚氧乙烯醚及月桂醇聚氧乙烯醚随环氧乙烷基(EO)数目(n)的改变其红外光谱的变化规律,并研究了聚氧乙烯链长的红外光谱测定方法,采用液膜法制样和光密度比值与n值的线性回归法求EO数,此法可快速简便地测得平均乙氧基化程度且结果可靠。  相似文献   

15.
某些聚氧乙烯型非离子表面活性剂EO数的红外光谱测定法   总被引:1,自引:0,他引:1  
本文观察了烷基酚聚氧乙烯醚及月桂醇聚氧乙烯醚随环氧乙烯基(EO)数目(n)的改变其红外光谱的变化规律,并研究了聚氧乙烯链长的红外光谱方法,采用液膜法制样和光密度比值与n值的线性回归法求EO数,此法可快速简便地测得平均乙氧基化程度且结果可靠。  相似文献   

16.
何飞强  傅和青  周威 《化工学报》2014,65(11):4599-4606
以环氧大豆油(ESO)与3-氨基丙基三乙氧基硅烷(KH550)双重交联改性水性聚氨酯(WPU).通过FTIR、TG、DSC、DMA、AFM、粒径分析仪、拉力试验机等仪器对改性的水性聚氨酯进行了表征.研究了ESO和KH550的含量对水性聚氨酯乳液、胶膜以及胶黏剂性能的影响.分析了KH550对水性聚氨酯结晶性能和微相分离的影响.研究发现,随着ESO与KH550的加入,水性聚氨酯乳液的性能得到改善,胶膜的吸水率先减小后增大,拉伸强度逐渐增大,断裂伸张率逐渐减小.水性聚氨酯胶黏剂对PVC的T-剥离强度先增大后减小.随着KH550含量的增加,热稳定性逐步改善,结晶性降低,软段与硬段相混合程度提高.当ESO为4%、KH550为2%(均为质量分数)时,水性聚氨酯胶黏剂的综合性能最好.  相似文献   

17.
以聚氧化丙烯二醇(PPG)、双羟基亲水性聚硅氧烷多元醇(UC3667)为软段,异佛尔酮二异氰酸酯(IPDI)、1,4-丁二醇(BDO)、二羟甲基丙酸(DMPA)、乙二胺(EDA)为硬段,制备了一系列聚硅氧烷改性水性聚氨酯(WPUs)。用DLS和FTIR表征了水性聚氨酯乳液粒径和膜结构。通过热重分析、拉伸测试、接触角测试、XPS对水性聚氨酯胶膜的性能进了测定。结果表明:随着聚硅氧烷加入量的增多,水性聚氨酯膜拉伸强度先增大后减小;且聚硅氧烷的加入提高了水性聚氨酯膜的热稳定性、断裂伸长率、接触角,降低了水性聚氨酯膜的表面能。当聚硅氧烷质量分数为5.0%时,胶膜表面的硅迁移量达到饱和,表面能为27.27 mJ/m~2。  相似文献   

18.
以过硫酸铵(APS)为引发剂,吐温80(Tween-80)和OP-10为乳化剂,自制的不饱和聚酰胺多胺环氧氯丙烷树脂(PAE)、苯乙烯(St)和丙烯酸丁酯(BA)为原料,采用乳液聚合的方法制备PAE/St/BA共聚物乳液。通过傅里叶变换红外光谱(FTIR)、热重分析(TGA)、Zeta电位及粒径分析、静态接触角和扫描电镜(SEM)对乳液的结构和性能进行了表征,并研究了不饱和PAE树脂用量对乳液施胶性能的影响。结果表明,当聚合反应中不饱和PAE树脂用量为3%(以乳液质量计),乳液用量为0.6%(以施胶液质量计)时,PAE/St/BA共聚物乳液施胶效果较好。  相似文献   

19.
以聚己二酸乙二醇酯二元醇、甲苯二异氰酸酯、乙二胺基己磺酸钠(N60)等为主要原料,制备了一系列不同N60用量的磺酸盐型水性聚氨酯(WPU)乳液。研究了N60用量对WPU乳液及其胶膜性能的影响,并通过FT-IR、TEM、TGA等方法进行表征。结果表明,磺酸盐型WPU乳液的贮存、冻融、高温稳定性均较好。随N60用量的增加,磺酸盐型WPU乳液粒径先减小后增大,粒径分布变窄,胶膜的拉伸强度、吸水率呈上升趋势、断裂伸长率下降。TEM图显示微粒分散性好,呈球形;相对于羧酸型WPU,磺酸盐型WPU胶膜的拉伸强度提高,热稳定性更好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号