首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanocrystalline thin films of TiO2 have been synthesized by sol gel spin coating technique Thin films of TiO2 annealed at 700 °C were characterized by X-ray diffraction(XRD), Atomic Force Microscopy, High resolution TEM and Scanning Electron Microscopy (SEM), The XRD shows formation of tetragonal anatase and rutile phases with lattice parameters a = 3.7837 Å and c = 9.5087 Å. The surface morphology of the TiO2 films showed that the nanoparticles are fine with an average grain size of about 60 nm. Optical studies revealed a high absorption coefficient (104 cm?1) with a direct band gap of 3.24 eV. The films are of the n type conduction with room temperature electrical conductivity of 10?6 (Ω cm)?1.  相似文献   

2.
The highly ordered and uniform TiO2 nanotube arrays were fabricated by anodic oxidation method and PTh(polythiophene)/TiO2 nanotube arrays electrode were obtained by electrochemical polymerization. X-ray powder diffraction (XRD) analysis confirmed the formation of TiO2 phase. The morphologies and optical characteristics of the TiO2 nanotube arrays were studied by scanning electron microscope (SEM), UV-Vis absorption spectra and Raman spectra. The results demonstrate that the PTh/TiO2 electrode could enlarge the visible light absorption region and increase the photocurrent in visible region. The modified TiO2 electrode with light-to-electric energy conversion efficiency of 1·46%, the short-circuit current density of 4·52 mAcm − 2, open-circuit voltage of 0·74 V and fill factor of 0·44, were obtained.  相似文献   

3.
Pure anatase TiO2 nanoparticles were synthesized by microwave assisted sol–gel method and further characterized by powder X-ray diffraction (XRD), energy dispersive x-ray analysis (EDAX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV–Visible spectrophotometer, SEM images showed that TiO2 nanoparticles were porous structure. The XRD patterns indicated that TiO2 after annealed at 300 °C for 3 h was mainly pure anatase phase. The crystallite size was in the range of 20–25 nm, which is consistent with the results obtained from TEM images. Microwave heating offers several potential advantages over conventional heating for inducing or enhancing chemical reactions.  相似文献   

4.
Titania-incorporated silica (TiO2–SiO2) porous materials have great applications in diverse areas. In this work, TiO2–SiO2 porous materials with tunable Si/Ti molar ratio (R) have been successfully prepared through a one-pot method under a near-neutral condition. With decreasing Si/Ti R, a phase transition from a macroporous foam-like structure to mesostructure is observed. The resultant TiO2–SiO2 porous materials possess large surface areas and high pore volumes. In addition, the titania species are homogenously dispersed in silica matrix when Si/Ti R ≥ 10. Our contribution provides a convenient method to synthesize TiO2/SiO2 porous materials with very large pore size, high pore volume, and relatively high titania content well dispersed in the silica wall framework.  相似文献   

5.
A gel was formed when a mixture of TiOCl2 and tartaric acid was heated on a water bath. Ultrafine powders of TiO2 in the anatase phase were formed, when the gel was decomposed at 623 K and the mole ratio of tartaric acid to titanium was 2. The anatase phase was converted into rutile phase on annealing at higher temperatures, > 773 K. When initial ratio of titanium to tartaric acid was < 2, the decomposition of gel leads to the formation of mixed phases of rutile and anatase. However, pure rutile phase was not formed by the decomposition of gel for any ratio of tartaric acid and titanium. These powders were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and surface area measurements. The average particle size obtained for anatase phase was 3 nm whereas it was 30 nm for rutile phase. Raman scattering experiments were also performed to confirm both anatase and rutile phases.  相似文献   

6.
WO3/TiO2 nanotube array electrode was fabricated by incorporating WO3 with TiO2 nanotube array via a wet impregnation method using ammonium tungstate as the precursor. TiO2 and WO3/TiO2 nanotube arrays were characterized by field emission scanning electron microscopy, X-ray diffraction, and energy dispersive X-ray analysis. In order to characterize the photoelectrochemical properties of WO3/TiO2 electrode, electrochemical impedance spectroscopy, and steady-state photocurrent (i ss) measurement at a controlled potential were performed in the supporting electrolyte containing different concentrations of glucose. The photoelectrochemical characterization results reveal that WO3/TiO2 nanotube array electrode possesses a much higher separation efficiency of the photogenerated electron–hole pairs and could generate more photoholes on the electrode surface compared with the pure TiO2 nanotube array electrode. The i ss for glucose oxidation at WO3/TiO2 nanotube array electrode is much higher than that at the pure TiO2 nanotube array electrode.  相似文献   

7.
The TiO2 hollow microspheres were prepared by microwave-assisted solvothermal treatment without template. The morphology and the phase of TiO2 hollow microspheres were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HR-TEM), and BET surface areas. The results show that the particles have hollow structures and the shell was covered by nanocrystals and have higher specific surface area. The possible formation mechanism of hollow TiO2 spherical structures has simply been proposed. The activity was evaluated by the photocatalytic degradation of methyl orange (MO). The results show that the particles having specific surface area show higher photocatalytic activity. It can be attribute to the doped F atoms and the creation of oxygen vacancies.  相似文献   

8.
9.
γ-MnOOH nanorods with different diameters were synthesized by a simple one-step polymer-assisted hydrothermal method using 50% (wt.%) Mn(NO3)2 solution and PEG-10000 as reagents. The diameters of as-synthesized γ-MnOOH nanorods were well controlled by simply varying the volume of the 50% Mn(NO3)2 solution. The calcination behavior of the as-synthesized γ-MnOOH nanorods was studied. Nanorods of β-MnO2 and α-Mn2O3 were synthesized by calcination at 350 and 600 °C for 1 h respectively.  相似文献   

10.
Fe(III)-doped TiO2 aerogels are prepared by acid catalyzed sol–gel method followed by supercritical drying, and then heat treatment. Raman spectra together with X-ray diffraction (XRD) and selected area electron diffraction (SAED) patterns of the iron-doped TiO2 aerogel samples revealed the existence of both anatase and brookite crystalline phases. It was found that the brookite phase formation is favored by the increase of the iron content in the dried samples. XRD measurements show that the lattice constant c of anatase phase decreases with the dopant addition, while the value of a remains essentially unchanged. The microstructure of the investigated samples is relatively compact with small mesopores as revealed from transmission electron microscopy (TEM). The most enhanced photocatalytic activity was exhibited by the TiO2 aerogel sample with 1.8 at.% Fe(III) whose apparent rate constant of the salicylic acid photodegradation was found to be of almost six times higher than that of Degussa P25.  相似文献   

11.
Producing nanostructured materials through metastable phases is interesting in the field of ceramic materials. Metastable phases can be obtained by the Atmospheric Plasma Spray (APS) technique which, is a well-known technique to produce coatings. The initial powders are melted during the spraying obtaining a homogenized phase due to their solubility in the liquid state. Afterwards, the molten droplets are quenched in a cooled medium, producing the sought metastable phases. Finally, during material consolidation, the metastable structure evolves due to a dual structure. A suppression of the grain growth is produced as a consequence of the immiscibility of both phases in the solid state. Due to their small grain size and uniform structure, these nanostructured materials exhibit very interesting properties such as higher hardness and toughness. The aim of this research has been to produce nanostructured Al2O3–TiO2 ceramic powders through APS + quenching route, starting from commercially available micron-sized powders. A complete characterization of the obtained structures using XRD, SEM, FESEM and EDS has been carried out in the Thermal Spray Center (CPT) of the University of Barcelona.  相似文献   

12.
Composites in the form of precipitated powders, hybrid xerogels, and SiO2 core/TiO2 shell particles have been produced via hydrolysis of precursors (alkoxides and inorganic derivatives of titanium and silicon) and have been characterized by differential thermal analysis, X-ray diffraction, adsorption measurements, and macroelectrophoresis. The results demonstrate that heat treatment of the composites leads to crystallization of the titanium-containing component and, accordingly, reduces their specific surface area. Hydrothermal treatment enables the fabrication of materials in which TiO2 nanocrystals are evenly distributed over an amorphous SiO2 matrix.  相似文献   

13.
TiO2 and TiO2:Fe thin films have been grown by electron beam evaporation and the influence of doping and heat treatment on their electrical and optical properties has been studied.  相似文献   

14.
Cluster like mesoporous TiO2 spheres, nanorods and nanoparticles were synthesized by simple wet chemical method. The TiO2 mesoporous spheres, nanorods and nanoparticles were characterized by powder X-ray diffraction, Raman spectroscopy, ultraviolet visible spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and transmission electron microscopy. Accordingly, a possible growth mechanism of mesoporous spheres, nanorods and nanoparticles were discussed. The changes of the dye-sensitized solar cell (DSSC) performance with the variation of the nanostructures of TiO2 which were used in photoanodes have been investigated. The TiO2 mesoporous sphere based DSSC with the film thickness of 20 μm was assembled and a conversion efficiency of 6.69% was obtained.  相似文献   

15.
We developed a process for preparing SiO2/TiO2 fibers by means of precursor transformation method. After mixing PCS and titanium alkoxide, continuous SiO2/TiO2 fibers were fabricated by the thermal decomposition of titanium-modified PCS (PTC) precursor. The tensile strength and diameter of SiO2/TiO2 fibers are 2.0 GPa, 13 μm, respectively. Based on X-ray diffraction (XRD), scanning electron microscopy (SEM), and high resolution transmission electron microscopy (HRTEM) measurements, the microstructure of the SiO2/TiO2 fibers is described as anatase–TiO2 nanocrystallites with the mean size of ~10 nm embedded in an amorphous silica continuous phase.  相似文献   

16.
A nano-MoS2/TiO2 composite was synthesized in H2 atmosphere by calcining a MoS3/TiO2 precursor, which was obtained via a quick deposition of MoS3 on anatase nano-TiO2 under a strong acidic condition. The obtained nano-MoS2/TiO2 composite was characterized by X-ray diffraction spectroscopy, Brunauer–Emmett–Teller (BET) surface area, scanning electron microscopy, high-resolution transmission electron microscopy, energy-dispersive spectrometry, ultraviolet–visible spectroscopy, and Fourier transform infrared spectroscopy. The results show that the composite had a high BET surface area because of its small size and irregularly layered structure. MoS2 in the composite was composed of typical layered structures with thicknesses of 2–8 nm and lengths of 10–40 nm. The composite contained a wide and intensive absorption at 400–700 nm, which is in the visible light region, and presented a positive catalytic effect on removing methyl orange from the aqueous solution. The catalytic activity of the composite was influenced by the initial concentration of methyl orange, the amount of the catalyst, the pH value, and the degradation temperature. In addition, the composite catalyst could be regenerated and repeatedly used via filtration three times. The deactivating catalyst could be reactivated after catalytic reaction by heating at 450 °C for 30 min in H2.  相似文献   

17.
Both humans and objects can emit infrared (IR) wavelengths which generate thermal emissions that can be detected with an IR camera. Therefore, highly IR reflective materials have been the subject of interest recently, for example, in achieving IR stealth. In this work, IR reflective coatings on polyester fabric in the form of a titanium dioxide/copper/titanium dioxide (TiO2/Cu/TiO2; TCT) sandwich-like structure are fabricated by using magnetron sputtering. The coated fabric samples are then examined by using an energy dispersive X-ray detector, a scanning electron microscope and an X-ray diffractometer. The reflection of IR wavelengths which range from 8 to 14 µm of the TCT coated fabric is evaluated. The bending stiffness, and mechanical and adhesion strengths of the coated fabric samples are also investigated. The results show that the TCT sandwich-like structure on the polyester fabric sputtered for 30 min with Cu which results in a Cu film of 200 nm in thickness is observed to have the maximum reflection of IR wavelengths. The color of the TCT coated polyester fabric samples sputtered for 5, 10, 20, and 30 min with Cu is green, yellow, brown and purple, respectively. The TCT coated fabric therefore has potential applications as IR protection textiles for military purposes.  相似文献   

18.
Reduction of porous titanium oxide precursors by the FFC-Cambridge process is reported in this paper. Porous TiO2 precursors were prepared by mixing the powder with different concentrations of graphite and polyethylene as fugitive agents and sintered at 1,073 K. The maximum porosity achieved before the mixture saturation was approximately 75%. After the electro-deoxidation by the FFC-Cambridge process, shrinkage of approximately 40% in volume and increase in porosity were observed, which might be due to atomic rearrangement, change of density and subsequent grain growth during reduction. The potential applied (below the decomposition potential of CaCl2) had a direct effect on the minimum level of oxygen achieved, which was approximately 3,000 ppm for 48 h at 3.00 V and the same level at half the time (24 h) when increasing potential to 3.15 V. On the other hand, thin layers (300 μm thickness) screen-printed on titanium foils showed shorter reduction time than that observed for thicker porous pellets. This led to the conclusion that cathode geometry (porosity and thickness of the pellet) might have an effect on the rate of reduction by increasing the surface area available and improving the mass diffusion of oxygen ions.  相似文献   

19.
The oxygen-ion conductivity of porous materials, the coarse-grained pyrochlore-like Sm2Ti2O7 and fine-grained Sm2TiO5 compounds, produced by mechanical activation of initial oxides is studied at 400–1000 °C. The Sm2TiO5 samples contain ~15 wt % of the nanosized pyrochlore-like Sm2TiO5 phase in addition to the rhombic phase. As determined by impedance spectroscopy, the ionic conductivities of Sm2TiO5 and Sm2Ti2O7 at 1000°C are 1.3 × 10?3 and 1.8 × 10?4 S cm?1, and the activation energies of the bulk and grainboundary conductivities of the materials are 1.04 and 1.24 eV for Sm2TiO5 and 1.69 and 1.80 eV for Sm2Ti2O7.  相似文献   

20.
The lanthanum-doped TiO2 (La3+-TiO2) photocatalysts were prepared by coprecipitation and sol–gel methods. Rhodamine B was used as a model chemical in this work to evaluate the photocatalytic activity of the catalyst samples. The optimum catalyst samples were characterized by XRD, N2 adsorption–desorption measurement, SEM and electron probe microanalyses to find their differences in physical and chemical properties. The experimental results showed that the La3+-TiO2 catalysts prepared by coprecipitation exhibited obviously higher photocatalytic activities as compared with that prepared by the conventional sol–gel process. The optimum photocatalysts prepared by the coprecipitation and sol–gel process have similar adsorption equilibrium constants in Rhodamine B solution and particle size distribution in water medium although there are larger differences in their surface area, morphology and pore size distribution. The pores in the sol-gel prepared catalysts are in the range of mesopores (2–50 nm), whereas the pores in the coprecipitation prepared catalysts consist of bigger mesopores and macropores (>50 nm). The morphology of the primary particles and agglomerates of the La3+-TiO2 catalyst powders was affected by doping processes. The inhibition effect of lanthanum doping on the phase transformation is greater in the coprecipitation process than in the sol–gel process, which could be related with the different amount of Ti–O–La bonds in the precursors. This finding could be used for preparing the anatase La3+-TiO2 catalysts with more regular crystal structure through a higher heat treatment temperature. The optimum amount of lanthanum doping is ca. 1.0 wt.% and the surface atomic ratio of [O]/[Ti] is ca. 2.49 for 1.0 wt.% La3+-TiO2 catalysts prepared by the two processes. The obviously higher photocatalytic activity of the La3+-TiO2 samples prepared by the coprecipitation could be mainly attributed to their more regular anatase structure and more proper surface chemical state of Ti3+ species. The optimum preparation conditions are 1.0 wt.% doping amount of lanthanum ions, calcination temperature 800 °C and calcination time 2 h using the coprecipitation process. As compared with the sol-gel process, the coprecipitation process used relatively cheap inorganic raw materials and a simple process without organic solvents. Therefore, the coprecipitation method provides a potential alternative in realizing large scale production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号