首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, the mechanical behavior of the Single-Lap Joints (SLJs) bonded with two different adhesives (FM 73 and SBT 9244) under a bending moment was analyzed, both experimentally and numerically. Four-point bending experiments for the joints with different overlap lengths were carried out and fracture surfaces of the SLJs were examined with a Scanning Electron Microscope (SEM). After the stress analysis in the SLJs was performed via a finite element method by considering the material non-linearities of the adhesives and adherend (AA2024-T3), the Finite Element Analysis (FEA) results were compared with experimental results. Finally, the stress analyses and experimental results show that the failure in the SLJs subjected to a bending moment probably initiates from the overlap region on the adhesive–upper adherend interface in tension and propagates towards the centre of the overlap. Also, in the joint subjected to a bending moment, it is seen that the load carried by the SLJ with SBT 9244 adhesive with increasing overlap length is more than that of the SLJ with FM 73 adhesive, although in the bulk form FM 73 adhesive is about three times stronger than SBT 9244 adhesive.  相似文献   

2.
A method for improving the mechanical behavior of adhesive joints is embedding metal macrofibers to the adhesive layer. The effect of the orientation of metal macrofibers laid across the length and width of the joint (longitudinal and transversal directions) on the strength and elongation at failure of single lap joints (SLJs) was investigated experimentally by testing SLJs reinforced with metal macrofibers laid in different orientations. The experimental results indicated that increasing the number of metal macrofibers in the longitudinal direction improved the shear strength and elongation at failure of SLJs. However, the improvements were found to be dependent on the normalized horizontal distance between the metal macrofibers for which a proper value of 1 was determined. While embedding metal macrofibers in the transversal direction degraded the mechanical properties of SLJs. Finite element analyses were undertaken to investigate the effects of fibers orientation and horizontal distance on the adhesive peel and shear stress distributions. The results revealed that decreasing the horizontal distance between the metal macrofibers laid in the longitudinal direction decreased the adhesive shear stress values indicating improvement of the joint strength, while in SLJs reinforced with metal macrofibers laid in the transversal direction decreasing the fibers distance increased the adhesive peel stress values resulting in joint strength reduction.  相似文献   

3.
Adhesively bonded technology is now widely accepted as a valuable tool in mechanical design, allowing the production of connections with a very good strength‐to‐weight ratio. The bonding may be made between metal–metal, metal–composite or composite–composite. In the automotive industry, elastomeric adhesives such as polyurethanes are used in structural applications such as windshield bonding because they present important advantages in terms of damping, impact, fatigue and safety, which are critical factors. For efficient designs of adhesively bonded structures, the knowledge of the relationship between substrates and the adhesive layer is essential. The aim of this work, via an experimental study, is to carry out and quantify the various variables affecting the strength of single-lap joints (SLJs), especially the effect of the surface preparation and adhesive thickness. Aluminium SLJs were fabricated and tested to assess the adhesive performance in a joint. The effect of the bondline thickness on the lap-shear strength of the adhesives was studied. A decrease in surface roughness was found to increase the shear strength of the SLJs. Experimental results showed that rougher surfaces have less wettability which is coherent with shear strength tests. However, increasing the adhesive thickness decreased the shear strength of SLJs. Indeed, a numerical model was developed to search the impact of increasing adhesive thickness on the interface of the adherend.  相似文献   

4.
Structural applications of adhesive bonding have been increasing in recent years due to improvements in the types of adhesives available and in improved knowledge of bonding procedures. Consequently, there exists a demand for techniques to assess adhesive joint strength, particularly along bondline interfaces where compliant adhesives contact more rigid metallic surfaces. The present study investigates the mixed-mode response of cracked-lap-shear (CLS) joints bonded with unprimed and electroprimed steel adherend surfaces. Three bondline thicknesses, representative of structural automotive joints, were evaluated for unprimed and primed bondlines. Experimental results for static load versus debond extension were input to finite element analyses for computing debond parameters (strain energy release rates). The debonds always initiated at a through-the-thickness location that had the greatest peel component of strain energy release rate. The total strain energy release rate values correlated well with trends in joint strength as a function of bondline thickness.  相似文献   

5.
One parameter that influences adhesively bonded joints performance is the adherend material and its effect should be taken into consideration in the design of adhesive joints. In this work, the effect of material on the mechanical behaviour of adhesive joints was investigated experimentally and numerically by single lap joints (SLJs) with different adherend materials (high strength steel, low strength steel and composite). The adhesives selected were two new modern tough structural adhesives used in the automotive industry. It was found that, for relatively short overlaps in SLJs bonded with structural modern tough adhesives, failure is dominated by adhesive global yielding and the influence of material on joint strength is not significant. For larger overlaps, the failure is not anymore due to global yielding and the effect of material becomes more important. Moreover, it was possible to evaluate which adhesive is more suited for each material.  相似文献   

6.
In this work, elasto-plastic stress analysis of a Single Lap Joint (SLJ) subjected to bending moment was investigated using 2D non-linear Finite Element Analysis (FEA). The SLJs, consisting of hardened steel as the adherend bonded by two adhesives, one stiff and one flexible, with very different mechanical behaviors were analyzed. In order to determine the effect of geometrical parameters on the performance of the SLJs, four different adherend thicknesses and overlap lengths for each adhesive were used. For verification of the analysis, the FEA results were compared with experimental results. It was observed that there was a significant effect of adherend thickness on the strength of the joint with both adhesives. However, the load carried by the SLJ with the flexible adhesive increased with increasing overlap length.  相似文献   

7.
In this study, a method has been proposed to obtain the failure envelope of brittle adhesives using the experimental failure loads of precracked single lap joints (SLJs). The proposed technique is based on the principles of linear elastic fracture mechanics (LEFM), on J-integral relations, and on results of a numerical analysis. Compared to the previous approaches, the introduced experimental method has some advantages such as low manufacturing costs and simpler test procedure. The proposed method can also provide a wide range of mode mix ratios without the need of an additional apparatus. The fracture envelope obtained from the proposed method was then verified by performing some fracture tests including double cantilever beam (DCB), end-notched flexure (ENF), and single leg bending (SLB) specimens. Good correlation was seen between the fracture envelopes of the proposed method and the ones obtained from the fracture mechanics experiments.  相似文献   

8.
The increasing use of adhesives in industry has boosted the search for tests which allow the adherence level to be defined. These tests, depending on the type of load, examine different stresses, failure modes and mixed modes. Furthermore, these tests can be focused either on initiation or propagation of adhesive failure. The subject of this study is the initiation of adhesive failure. The initiation of failure can be determined with the 3-point bending test. Trials of 3-point bending tests were conducted on an aluminum 2024 substrate, with two different thicknesses, in order to understand the impact of the adherend thickness. The aluminum substrate received different types of surface pre-treatment: acetone cleaning, hydrochloric acid etching or aminopropyltriethoxysilane coating. Two adhesives were used: the first one was a mixture of epoxy pre-polymer DGEBA and DETA amine, whereas the second was a commercially formulated adhesive, ELECOLIT 6604. The initiation of adhesive failure was obtained by 3-point bending test and verified with SEM analysis. The failure loads measured enabled the effect of surface treatment on adhesive failure to be revealed: the results indicate that the surface treatment with silane is the most efficient in comparison to hydrochloric acid etching and of course to the simple acetone degreasing. It was assumed that the scatter of the results obtained for each series is due to the variation of the “intrinsic” adherence between the adhesive and the substrate. Furthermore, it was noted that the failure loads for different substrate thicknesses cannot be compared due to the effect of the thickness: it was therefore not possible to simply compare results obtained for different thicknesses of the same substrate for a given substrate-adhesive system. The energy approach proposed in this study makes it possible. The energy requested to initiate the adhesive failure for a given system can then be known, whatever the initial geometry of the 3-point bending test is. However, it was also shown that the thickness of the substrate must be correctly chosen. A thick substrate increases the dispersion and a thin substrate may induce local unwelcome plastic strain. In conclusion, this study allows to define an energy criteria for adhesives failure initiation.  相似文献   

9.
In this paper, environmental strength degradation of 180 different adhesive single lap joints (SLJ), including mono-adhesive Araldite 2015, mono-adhesive Araldite AV138, and a mixed-adhesive of Araldite 2015 and Araldite AV138 subjected to moist conditions are experimentally studied. Four different moist conditions, i.e. dry, 75.3, 84.2 RH% and immersion in tap water, have been taken into consideration and the specimens are tested after exposing to these environments at room temperature for 0, 35, 80 and 270 days. The specimens have been tested in two different strain rate, i.e. 1 mm/min and 100 mm/min. The results reveal that although, in a dry environment, mixed-adhesive joints have higher failure loads in comparison to mono-adhesive SLJs, in a moist environment, they have the highest reduction in static failure load with regard to the mono-adhesive ones. Moreover, despite the finally brittle trend in failure load, mixed-adhesives manifest a behavior very similar to ductile mono-adhesives regarding elongation. Analytical predictions of failure load are also consistent with the experimental observations in dry condition.  相似文献   

10.
In this study, our previous experimental study was extended applying the exponential Drucker-Prager (EDP) yield criterion to define the numerical failure loads for mono and bi-adhesive single lap joints (SLJs) [Öz and Özer, 2016]. Bi-adhesive (or hybrid adhesive) joint is an alternative stress-reduction technique for adhesively bonded lap joints. The joints have two adhesives with different moduli in the overlap region. Non-linear finite element analyses were carried out for mono and bi-adhesive joints implementing the EDP material model. Distributions of EDP maximum principal stress, equivalent stress and shear stress were obtained along the middle of the adhesive thickness. Numerical failure loads were compared with our previous experimental failure loads. In addition, hydrostatic stress and equivalent plastic strain distributions for these joints under the failure loading were obtained. The general results show that experimental and numerical failure loads were in a good agreement. As a result, when bond-length ratios are selected properly and appropriate adhesives are used along the overlap length, the strength of bi-adhesive joints, compared to mono-adhesive joints, was found to increase considerably.  相似文献   

11.
基于构建的裂纹剥离扩展失效过程的模拟方法,提出了预测临界载荷的方法,并通过界面的临界应变能释放率与损伤起始应力,构建了预防界面裂纹剥离扩展失效的等值临界真空压力约束预防控制线和设计准则。结果表明,临界压力载荷受控于界面初始预裂纹长度、复合界面的临界应变能释放率(GIC)和损伤起始应力(T0),与界面初始预裂纹长度呈负关联关系,而与临界应变能释放率与损伤起始应力呈正关联关系;当初始预裂纹长度由11.11 %增至15.55 %时,临界压力载荷(Pc)由87.6 kPa降至为57 kPa,降幅为34.9 %;内衬界面剥离韧性参数(T0,GIC)的坐标点位于等值临界真空压力约束控制线之上,可有效预防内衬界面剥离扩展失效。  相似文献   

12.
The study of the shear strain distribution at the bonding interface helped us to understand the bamboo bonding interface response mechanisms to solve problems of ply bamboo deformation or bonding failure. The shear strain distribution across a two‐ply bamboo sheet bonded with a ductile phenol–formaldehyde resin (PF) modified by poly(vinyl alcohol) (PVA) was measured by means of electronic speckle pattern interferometry, along with tensile strength measurements to prove the shear stain distribution on a macroscopic scale. This research effectively combined macroscopic mechanical properties with microcosmic interfacial mechanical properties. The shear strength and shear strain results showed that PF modified with 20% PVA performed better than common PF and PF modified with 5 and 10% PVA. Microscopic fluorescent characterization of the bonding interface also provided evidence that a new bonding mechanism was adequate for bamboo bonding under the ductile PF modified with 20% PVA. Moreover, we suppose that the results of this study will help in the choice of bamboo‐specific adhesives under different strain conditions. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1345‐1350, 2013  相似文献   

13.
In this study, both experimental tests and numerical simulation are implemented to investigate the tensile performance of adhesively bonded CFRP single-lap joints (SLJs). The study considers 7 different overlap lengths, 5 adherend widths and 3 stacking sequences of the joints. Three-dimensional (3D) finite element (FE) models are established to simulate the tensile behavior of SLJs. The failure loads and failure modes of SLJs are investigated systematically by means of FE models and they are in good agreement with those of experiments, proving the accuracy of finite element method (FEM). It is found that increasing the adherend width can improve the load-carrying capacity of the joint better than increasing the overlap length does. Moreover, choosing 0° ply as the first ply is also beneficial for upgrading joint's strength. With respect to failure modes, cohesive failure in adhesive and delamination in adherend take dominant, while matrix cracking and fiber fracture only play a small part. With overlap length increasing or adherend width decreasing, cohesive failure takes up a smaller and smaller proportion of whole failure area, but the opposite is true for delamination. SLJs bonded with [0/45/-45/90]3S adherends are prone to cohesive failure, and [90/-45/45/0]3S adherends are easy to appear delamination. Both shear and peel stress along the bondline indicate symmetrical and non-uniform distributions with great stress gradient near the overlap ends. As the load increases, the high stress zone shifts from the end to the middle of the bondline, corresponding to the damage initiation and propagation in the adhesive layer.  相似文献   

14.
The simplicity and efficiency of the adhesive joints have increased more and more their use in many fields. In ship construction the need to join different materials, such as the bonding of the hull/deck, the sea chest, the portholes, the windshields, the panels of cabins, etc. leads to choosing increasingly the adhesive joints. In this work we have evaluated the effects of both SMP (Silyl Modified Polymer) based adhesives and sealants on single lap joints (SLJs) with dissimilar substrates. Three pairs of single lap joints were taken into account among dissimilar adherends: stainless steel (AISI 316) with PMMA (or Altuglas®) and monolithic composite laminates bonded with glass or PMMA. Before tensile testing some SLJ samples were subjected to a three-dimensional computed tomographic analysis to evaluate how the presence of possible defects in the adhesive layer affects the failure mode. A design of experiments was defined in order to quantify the effect of the considered factors and their correlation. The obtained maximum tensile stress values confirm the data provided by the manufacturer, approximately between 2 and 2.5 MPa, showing generally cohesive fracture. Finally the considered SMP adhesives and sealants are well suited for the chosen different substrates, although special attention should be placed on the glass–GFRP joint as it is confirmed by statistical analysis.  相似文献   

15.
Single-lap joint (SLJ) geometry is the most widely used type of adhesive joint geometry. In this joint, peel stresses occur at the overlap ends due to load eccentricity and the presence of shear-free adhesive termination surfaces. These peel stresses, along with the transverse tensile stresses which occur along the overlap longitudinal axes, and adhesive shear stresses, ultimately cause joint failure. Obviously, reductions in these stresses should result in higher joint strength and increased load capacity. To this end, we exploited elastic spring-back capability of (steel) metal adherends by initially forming curved segments of varying arc lengths and radii at overlap ends. These adherends with curved-end sections were then bonded in single-lap configuration, simply by applying sufficient bonding pressure to elastically flatten the curved segments to result in typically flat overlap sections subsequent to adhesive cure and the removal of bonding pressure. Since the elastic adherend overlap ends tend to revert back to their initial curved form, they exert compressive residual stresses on the adhesive layer in the overlap end regions. We determined that the compressive residual stresses induced in this fashion considerably increased the load capacity of SLJs subjected to tension.  相似文献   

16.
In order to enhance the strength of adhesively bonded single-lap joints (SLJs), the adhesively bonded SLJs with reinforcements were proposed. Adhesively bonded SLJs of different substrates and with different reinforcements were investigated experimentally and numerically. Scanning electron microscopy was performed on the fracture surfaces of the joints to analyze the failure mechanism. Shear stresses and peeling stresses of the adhesive layer were calculated with finite element analyses (FEA). Results showed that the deformation of the joints decreased with an increase in stiffness at the end of the overlap region. The strength increase in adhesively bonded SLJs with reinforcements was validated by the results from experimental tests and FEA.  相似文献   

17.
采用钛合金与芳纶纤维复合材料制备不同搭接长度的单搭接接头。利用数字图像相关技术(DIC)、万能试验机等表征方法,对接头拉伸应变与极限载荷进行表征,研究了搭接长度对异质材料单搭接接头胶接性能与破坏模式的变化规律。结果表明,随着搭接长度的增加,单搭接接头极限载荷提升,胶接强度降低,高搭接长度接头出现渐进损伤;偏心弯矩引起的接头偏移减少,搭接部位纵向应变区域面积占比降低;芳纶纤维复合材料层间破坏模式增多,钛合金?胶层界面破坏模式减少,剥离复合材料层数增加。  相似文献   

18.
使用G/Epoxy作为底材研究了垫板、结构胶黏剂厚度和底材表面处理对拉伸剪切强度的影响。使用光学显微镜观察了断口形貌。结果表明加垫板能减小试验过程中由于加载偏心引起剥离应力,测试结果较大;结构胶黏剂的厚度和底材表面处理对拉伸剪切强度影响十分明显,随着厚度的增大而减小,经打磨表面裸露出纤维的试样拉伸剪切强度很低。结构胶黏剂厚度较小时以内聚破坏为主,随着厚度的增加破坏模式转变为粘接破坏。  相似文献   

19.
Peel data for two epoxy adhesives and a recent model of the adhesive stresses in the peel geometry are used to investigate the effectiveness of two constitutive models and several adhesive failure criteria. The failure criteria are based on either the critical strain energy-release rate or the critical von Mises strain at the peel root, both taken as functions of the “loading zone length” (LZL), defined as a measure of the degree of stress concentration at the root of the peeling adherend. The peel model uses LZL as an independent parameter that captures the effects of the peel angle, adherend thickness, and the mechanical properties of the adhesive and adherend. Both the energy- and strain-based failure criteria can be used to predict the steady-state peel load with an average absolute error of less than 10% over the range of conditions that were examined.  相似文献   

20.
A non-linear finite element technique has been used to predict the mode of failure and failure load of single lap joints made from three aluminium alloys and four epoxy adhesives, and the results compared with those obtained from experiment and closed-form analyses. The finite element program used was able to account for the large displacement rotations that occur in a single lap joint under load, and allowed the effects of elasto-plasticity in both the adhesive and adherends to be modelled. A failure criterion based on the uniaxial tensile properties of the adhesive was used: for two untoughened adhesives a maximum stress criterion was found to be appropriate while for two toughened adhesives a maximum strain criterion was employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号