首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this research was to investigate the effect of polymeric 4, 4 diphenyl methane diisocyanate (pMDI) on the physical and mechanical properties of plywood panels bonded with an ionic liquid (IL)-treated lignin-urea-formaldehyde resin. Soda lignin modified by 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]) IL was added to a urea formaldehyde (UF) resin during resin synthesis to prepare a lignin-urea-formaldehyde (LUF) resin. pMDI at various contents (2, 4, and 6% on resin solids) was then added to prepare a LUF resin. The thermal and physicochemical properties of the resins prepared as well as the water absorption, shear strength, and formaldehyde emission of the plywood panels bonded with them were measured according to standard methods. DSC analysis indicated that the addition of pMDI decreases the gel onset and curing temperatures of the LUF resin. According to the results obtained, the addition of pMDI significantly increased the viscosity and solid content and accelerated the gelation time of LUF resins. Based on the findings of this research, the addition of pMDI dramatically improves the performance of LUF resins as a new adhesive for wood-based panels. The LUF resins with isocyanate added yielded panels presenting lower formaldehyde emission and lower water absorption content when compared to those bonded with the control LUF resins. Greater dry and wet shear strength can be obtained by a small addition of pMDI to LUF resins.  相似文献   

2.
尤戎(Uron)树脂及其用法对脲醛树脂性能的影响   总被引:2,自引:0,他引:2  
以不同工艺制备了三种含尤戎结构的脲醛树脂(Uron树脂),通过其与普通脲醛树脂的混合制得多种混合脲醛树脂。研究了Uron树脂及其使用方法对降低脲醛树脂胶粘剂游离甲醛含量及胶接胶合板甲醛释放量的作用与效果。结果表明:1)三种不同摩尔比的Uron树脂对脲醛树脂游离甲醛含量及胶接胶合板甲醛释放量都有明显的降低作用,游离甲醛含量最多可降低43%,甲醛释放量最多可降低61%;2)Uron树脂的添加量在10%-20%时对胶合强度的提高有利,强度最大可提高29%;3)低摩尔比Uron树脂对脲醛树脂的改性效果优于高摩尔比Uron树脂。  相似文献   

3.
As a part of abating the formaldehyde emission (FE) of urea–formaldehyde (UF) resin, this study was conducted to investigate the effects of formaldehyde to urea (F/U) mole ratio on thermal curing behavior of UF resins and properties of PB bonded with them. UF resins synthesized at different F/U mole ratios (i.e., 1.6, 1.4, 1.2, and 1.0) were used for the manufacture of PB. Thermal curing behavior of these UF resins was characterized using differential scanning calorimetry (DSC). As the F/U mole ratio decreases, the gel time, onset and peak temperatures, and heat of reaction (ΔH) increased, while the activation energy (Ea) and rate constant (k) were decreased. The amount of free formaldehyde of UF resin and FE of PB prepared decreased in parallel with decreasing the F/U mole ratio. The internal bond strength, thickness swelling, and water absorption of PB was slightly deteriorated with decreasing the F/U mole ratio of UF resins used. These results indicated that as the F/U mole ratio decreased, the FE of PB was greatly reduced at the expense of the reactivity of UF resin and slight deterioration of performance of PB prepared. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1787–1792, 2006  相似文献   

4.
The varying polymer structures of wood adhesive‐type urea–formaldehyde resins resulting from different formaldehyde/first urea (F/U1) mole ratios used in the first step of resin manufacture were investigated using 13C. As the F/U1 mole ratio decreased progressively from 2.40 to 2.10 and to 1.80, the viscosity increase due to polymerization during resin synthesis became faster and resulted in decreasing side‐chain branches and increasing free urea amide groups in the resin structure. The resultant UF resins, with the second urea added to an overall F/(U1 + U2) of 1.15, showed viscosity decreases when heated with stirring or allowed to stand at room temperature that were also characteristic with the F/U1 mole ratios used in resin synthesis. The formaldehyde emission levels of particleboards bonded with the freshly made UF resins showed relatively small but similarly characteristic variations. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2800–2814, 2001  相似文献   

5.
A solid state 13C NMR study of hardened networks obtained by the reaction of blocked and nonblocked isocyanates (pMDI) with urea‐formaldehyde (UF) resins in water showed different results according to the temperature of the reaction. At high temperature, in water, both a nonblocked or an emulsifiable, blocked isocyanate, appear to crosslink with UF resins through the formation both of traditional methylene bridges connecting urea to urea and of urethane bridges. The latter have been confirmed by 13C NMR to form in water by reaction of the isocyanate ? N?C?O group with the hydroxymethyl groups of the UF resin. At ambient temperature, UF/pMDI resins where the pMDI is a emulsifiable blocked isocyanate, do not appear to form urethanes to any great extent but rather to crosslink through the usual UF resin urea to urea methylene bridges. Even in this case, when urethane bridges appear to be absent, evidence of crosslinking in water through reaction of the isocyanate with the ? NH2 and ? NH? amide of the UF resin has not been observed. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 589–596, 2006  相似文献   

6.
The reactive multihydroxy soybean oil (MHSBO) was synthesized from epoxidized soybean oil (ESBO). The ESBO was reacted with ethylene glycol to obtain MHSBO having high functionality. This study investigated a feasibility to prepare wood adhesive through the reaction of polymeric methylene‐diphenyl‐4,4′‐diisocyanate (pMDI) with MHSBO. Different polyurethane adhesives were prepared with a variety of equivalent mole ratios (eq. mole ratios) of MHSBO to pMDI. The chemical reactions of adhesives were analyzed using 1H NMR and Fourier transform infrared (FTIR), and their thermal studies were investigated by DSC and TGA. The MHSBO/pMDI resins (3 : 1 and 2 : 1 eq. mole ratios) showed endothermic peaks, whereas the MHSBO/pMDI resins (1 : 2 and 1 : 3 eq. mole ratios) showed exothermic peaks. The best adhesion strength was found when plywood was bonded with the adhesive of a eq. mole ratio of 2 : 1 (MHSBO : pMDI). These results indicated that the bond strength was not related to the reactivity obtained from the FTIR spectra. But it was explained that the adhesion strength increased as the residual  NCO groups in the adhesive reacted with the hydroxy groups of wood during the manufacturing of plywood. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
为了降低脲醛树脂的游离甲醛含量及其胶接制品的甲醛释放量,本研究在脲醛树脂合成过程中加入改性剂代替部分甲醛,通过尿素-甲醛-改性剂发生共缩聚反应,合成了改性脲醛树脂。研究了改性剂取代甲醛的摩尔比对改性脲醛树脂固化速度、游离甲醛含量的影响,以及在不同的热压条件下,对胶接胶合板的胶合强度和甲醛释放量的影响。研究结果表明,改性剂的加入不仅能有效降低改性脲醛树脂的游离甲醛含量及其胶合板的甲醛释放量,还能提高胶合板的胶合强度和耐水性。  相似文献   

8.
Urea‐formaldehyde (UF) resins are prone to hydrolysis that results in low‐moisture resistance and subsequent formaldehyde emission from UF resin‐bonded wood panels. This study was conducted to investigate hydrolytic stability of modified UF resins as a way of lowering the formaldehyde emission of cured UF resin. Neat UF resins with three different formaldehyde/urea (F/U) mole ratios (1.4, 1.2, and 1.0) were modified, after resin synthesis, by adding four additives such as sodium hydrosulfite, sodium bisulfite, acrylamide, and polymeric 4,4′‐diphenylmethane diisocyanate (pMDI). All additives were added to UF resins with three different F/U mole ratios before curing the resin. The hydrolytic stability of UF resins was determined by measuring the mass loss and liberated formaldehyde concentration of cured and modified UF resins after acid hydrolysis. Modified UF resins of lower F/U mole ratios of 1.0 and 1.2 showed better hydrolytic stability than the one of higher F/U mole ratio of 1.4, except the modified UF resins with pMDI. The hydrolytic stability of modified UF resins by sulfur compounds (sodium bisulfate and sodium hydrosulfite) decreased with an increase in their level. However, both acrylamide and pMDI were much more effective than two sulfur compounds in terms of hydrolytic stability of modified UF resins. These results indicated that modified UF resin of the F/U mole ratio of 1.2 by adding acrylamide was the most effective in improving the hydrolytic stability of UF resin. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
Based on the difference in the reaction rate of different groups of urea-formaldehyde resins and isocyanate resins, this study designed two different urea-formaldehyde resins: a normal urea-formaldehyde resin (UF) and one with high mono-hydroxymethylurea content (UF*) to react with polymeric methylene diphenyl diisocyanate (pMDI) resin. The difference in mono- and di-hydroxymethyl urea content between UF and UF* resins was analyzed by nuclear magnetic resonance (NMR) spectroscopy, and results showed that the mono-hydroxymethyl urea content of the UF* resin was much higher than that of the conventional UF resin. The fourier transform infrared spectrometer (FTIR) analysis of differences between UF* and UF resin showed that the UF* process did not change the main structure of the conventional urea formaldehyde resin. Differential scanning calorimeter (DSC) analysis showed that the curing temperature of the hybrid UF*-pMDI resin was reduced 27.3°C compared to that of the UF-pMDI resin. When these hybrid resins were used to bond plywood respectively, test results showed that the UF*-pMDI resin improved the dry and wet bonding strength by 2.6% and 3.9%, respectively, compared with the UF-pMDI resin under the condition of hot pressing time (3 min) and temperature (140°C), meeting the requirement of Chinese standard of GB/T 9846–2015 for Class III board. This study provides a new path for further improving the performance and design of hybrid resins based on isocyanate and urea-formaldehyde resin.  相似文献   

10.
Kinetic evidence in thermomechanical analysis experiments and carbon‐13 nuclear magnetic resonance spectroscopy (13C NMR) evidence indicates that the strength of a joint bonded with UF (urea–formaldehyde)/polymeric 4,4'‐diphenylmethane diisocyanate (pMDI) glue mixes is improved by coreaction of the methylol groups of UF resins with pMDI to form a certain number of methylene cross‐links. The formation of these methylene cross‐links is predominant, rather than formation of urethane bridges which still appear to form but which are in great minority. This reaction occurs in presence of water and under the predominantly acid hardening conditions, which is characteristic of aminoplastic resins (thus, in presence of a hardener). Coreaction occurs to a much lesser extent under alkaline conditions (hence, without UF resins hardeners). The predominant reaction is then different in UF/pMDI adhesive systems than that observed in phenol‐formaldehyde (PF)/pMDI adhesive systems. The same reaction observed for UF/pMDI system at higher temperatures has also been observed in PF/pMDI systems, but only at lower temperatures. The water introduced in the UF/pMDI mix by addition of the UF resin solution has been shown not to react with pMDI to an extent such as to contribute much, if at all, to the increase in strength of the hardened adhesive. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3681–3688, 2002  相似文献   

11.
This study investigated the relationship between the hydrolytic stability and the crystalline regions of cured UF resins with different formaldehyde/urea (F/U) mole ratios to better understand the hydrolysis of cured urea-formaldehyde (UF) resin adhesives responsible for its formaldehyde emission in service. As the F/U mole ratio decreased, the hydrolytic stability of cured UF resins improved, but decreased when the particle size of the resin was reduced. To further understand the improved hydrolytic stability of cured UF resin with lower F/U mole ratios, X-ray diffraction (XRD) was extensively used to examine the crystalline part of cured UF resins, depending on F/U mole ratios, cure temperature and time, hardener type and level. Cured UF resins with higher F/U mole ratios (1.6 and 1.4) showed amorphous structure, while those with lower F/U mole ratios (1.2 and 1.0) showed crystalline regions, which could partially explain the improved hydrolytic stability of the cured UF resin. The crystalline part intensity increased as cure temperature, cure time and hardener content increased. But the 2θ angles of these crystalline regions did not change, depending on cure temperature and time, hardener type and level, suggesting that the crystalline regions of the cured UF resin were inherent. This study indicates that the crystalline regions of cured UF resins with lower F/U mole ratio contribute partially to the improved hydrolytic stability of the cured resin.  相似文献   

12.
This study investigated the effect on the curing behavior, activation energy (E a) of the curing reaction, crystalline structure, crosslinking, and free formaldehyde content of the addition of the following scavengers in urea-formaldehyde (UF) resins: medium density fiber board flour, rice husk flour, silica powder, and tannin powder. The scavenger content was 3 and 7?wt% of the UF resin solid content. The curing behavior of UF resins was monitored by differential scanning calorimetry, thermogravimetric analysis, and X-ray crystallography. The curing E a was correlated to the free formaldehyde content of the scavenger containing UF resins. The thermal stability of the UF resins increased but the curing E a decreased with increasing scavenger content. After curing, the crystallinity of the UF resins decreased in the presence of scavengers. The unreacted free formaldehyde content was reduced in the tannin powder containing UF resins. The degree of crosslinking affects the formaldehyde emission from wood panels bonded with UF resin. This is especially true for wood panels in service for long periods of time and exposed to high humidity conditions. Once the free formaldehyde which influences considerably the emission has disappeared, the presence of the –CH2– groups then becomes important. Hence, an increased resin crosslinking indicates a higher concentration of –CH2– groups present, which may hydrolyze and emit formaldehyde slowly over time.  相似文献   

13.
The aim of this research was to investigate the influence of lignin modified by ionic liquids on physical and mechanical properties of plywood panels bonded with the urea–formaldehyde (UF) resin. For this purpose, soda bagasse lignin was modified by the 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]) ionic liquid and then the various contents of unmodified and modified lignins (10, 15, and 20%) were added at pH=7 instead of second urea during the UF resin synthesis. The physicochemical properties of the prepared resins as well as the water absorption, shear strength, and formaldehyde emission of the plywood panels made with these adhesives were measured according to standard methods. According to Fourier Transform Infrared (FTIR) Spectrometry, by treatment of lignin, the C=O, C–C, and C–H bonds decrease while the content of the C–N bond dramatically increases. Based on the finding of this research, the performance of soda bagasse lignin in UF resins dramatically improves by modification by ILs; as the resins with modified lignin yielded lower formaldehyde emission and water absorption when compared to those made from unmodified lignin and commercial UF adhesives, respectively. The shear strength as well as wood failure percentages are lower for the panels produced with modified lignin than for the panels produced with UF resins alone.  相似文献   

14.
The incorporation of the modified starch (MS) in urea‐formaldehyde resins at different stage of the synthesis was studied in this article. The synthesized resins were characterized by Fourier transform infrared spectroscopy, indicating that the ester bond can be introduced into the UF structure after the addition of MS. The curing reactions were examined with differential scanning calorimetry and it reveals that curing temperature of UF resin are slightly shifted to higher temperatures. To study the bonding strength and formaldehyde emission of the bonded plywood, the addition method and amount of MS are systematically investigated. The performance of the UF resins is remarkably improved by the addition of MS around 15% (weight percentage of the total resin) in the second stage. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40202.  相似文献   

15.
CP MAS 13C NMR spectra of hardened resins have shown that urethane bridges derived from the reaction of the isocyanate group with the hydroxymethyl group of urea do form even at fast curing times comparable to what was used in the wood panels industry, in lower proportions than what was shown earlier. Polyureas and biurets obtained from the reaction of isocyanate with water are the predominant crosslinking reactions of pMDI alone and in UF/pMDI resin systems under fast curing conditions. Residual, unreacted isocyanate groups in the hardened network are consistently observed. Their proportion markedly decreases when the original proportion of urea–formaldehyde (UF) resin is high and that of pMDI is low. Under these fast curing conditions, the UF resin appears to self‐condense through an unusually high proportion of methylene ether links rather than methylene bridges alone. A marked proportion of residual, unreacted hydroxymethyl groups is also noticeable, initially, in the UF self‐condensation network. Direct NMR tests on thin hardboard bonded under fast pressing conditions with different proportions of UF/pMDI confirmed that crosslinking due to polyureas and biurets formation are predominant in the crosslinking of pMDI when alone and in UF/pMDI resin systems. They confirmed that residual, unreacted isocyanate groups are present in the finished panel. Their proportion is higher when the proportion of pMDI in the system is high. The presence or absence of urethanes could not be confirmed directly on the panels as the relevant peaks are masked by the wood carbohydrates signals of wood cellulose and hemicelluloses. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1624–1632, 2006  相似文献   

16.
The aim of this research was to compare the influence of modified lignin by ionic liquid (IL) on the physical and mechanical properties of wood-based panels bonded with urea-formaldehyde (UF) resin with the effect of glyoxalated lignin (GL) on UF properties. For this purpose, soda bagasse lignin was respectively modified by 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]) IL and glyoxal and then the various content of modified lignins (10, 15, and 20%) were added at pH=7 during the UF resin synthesis instead of the second urea . The changes in the structure and thermal properties of lignin, after and before modification with glyoxal and IL, were analyzed by Fourier transform infrared spectrometry (FTIR) and differential scanning calorimetry (DSC). The physicochemical properties of the prepared resins as well as the water absorption, shear strength, and formaldehyde emission of the plywood panels made with these adhesives were measured according to standard methods. According to the FTIR spectra, the content of C=O bond increased in GL while in the IL-treated lignin the content of C–N bond markedly increased. DSC analysis indicated that lignin modified by IL had lower glass transition temperature (Tg) value compared to those modified with glyoxal and unmodified lignin, respectively. The UF resins containing IL-treated lignin exhibit a faster gel time compared to those prepared with GL. Equally, the plywood panels prepared with an IL had lower formaldehyde emission and higher mechanical strength compared to those made from UF resin containing GL. There were no significant differences in dimensional stability of the panels bonded with UFs modified with GL and those with IL-modified lignin.  相似文献   

17.
To lower the formaldehyde emission of wood‐based composite panels bonded with urea–formaldehyde (UF) resin adhesive, this study investigated the influence of acrylamide copolymerization of UF resin adhesives to their chemical structure and performance such as formaldehyde emission, adhesion strength, and mechanical properties of plywood. The acrylamide‐copolymerized UF resin adhesives dramatically reduced the formaldehyde emission of plywood. The 13C‐NMR spectra indicated that the acrylamide has been copolymerized by reacting with either methylene glycol remained or methylol group of UF resin, which subsequently contributed in lowering the formaldehyde emission. In addition, an optimum level for the acrylamide for the copolymerization of UF resin adhesives was determined as 1%, when the formaldehyde emission and adhesion strength of plywood were taken into consideration. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
As a part of understanding of the network structure of urea–formaldehyde (UF) resin adhesives, this study examined the swelling behaviour of cured UF resin adhesives with four different formaldehyde–urea (F/U) mole ratios, using Flory–Rehner thermodynamic theory and field emission-scanning electron microscopy (FE-SEM) to relate the swelling behaviour to consequently induce micromorphological changes. Cured UF resin films before and after acetone extraction were exposed to swelling in dimethyl sulphoxide at three different temperatures. For the first time, this study reported the experimentally determined swelling parameters, such as sol fraction (ωsol), polymer volume fraction (φp), polymer–solvent interaction parameter (χ), and the number average molecular weight between cross-links (Mc), for cured UF resin adhesives. Both ωsol and Mc decreased as the F/U mole ratio increased. But these values increased with an increase in the swelling temperature. The extraction resulted in negative ωsol values, suggesting the removal of a scattered distribution of ωsol in the cured UF resins. The micromorphology helped to explain the differences in the molecular integrity of the resins, indicating a close relationship between the swelling behaviour and the morphological changes after the swelling.  相似文献   

19.
Syntheses of urea–melamine–formaldehyde (UMF) resins were studied using 2–12% melamine levels and UF base resins that were preadvanced to various different extents. The melamine reaction was carried out at pH 6.3 with F/(U + M) mole ratio of 2.1 until a target viscosity of V was reached (Gardener–Holdt) and then the second urea added at pH 8.0 to give a final F/(U + M) mole ratio of 1.15. Analyses with 13C‐NMR and viscosity measurements showed that MF components react fast and the UF components very slowly in the melamine reaction. Therefore, as the extent of preadvancement of UF base resin was decreased, the reaction time to reach the target viscosity became longer and the MF resin components showed high degrees of polymerization. The overpolymerization of MF components resulted in increasingly more opaque resins, with viscosity remaining stable for more than a month. As the preadvancement of UF base resin was increased, the extent of advancement of MF components decreased, to give clearer resins, with viscosity slowly increasing at room temperature. Overall, preadvancing the UF base resin components to an appropriate extent was found to be a key to synthesizing various low‐level melamine‐modified UMF resins. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2559–2569, 2004  相似文献   

20.
Particleboards bonded with 6 and 12% melamine‐modified urea‐formaldehyde (UMF) resins were manufactured using two different press temperatures and press times and the mechanical properties, water resistance, and formaldehyde emission (FE) values of boards were measured in comparison to a typical urea‐formaldehyde (UF) resin as control. The formaldehyde/(urea + melamine) (F/(U + M)) mole ratio of UMF resins and F/U mole ratio of UF resins were 1.05, 1.15, and 1.25 that encompass the current industrial values near 1.15. UMF resins exhibited better physical properties, higher water resistance, and lower FE values of boards than UF resin control for all F/(U + M) mole ratios tested. Therefore, addition of melamine at these levels can provide lower FE and maintain the physical properties of boards. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号