首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetohydrodynamic flow and heat transfer in an ionic viscous fluid in a porous medium induced by a stretching spinning disc and modulated by electroosmosis under an axial magnetic field and radial electrical field is presented in this study. The effects of convective wall boundary conditions, Joule heating and viscous dissipation are incorporated. The governing partial differential conservation equations are transformed into a system of self-similar coupled, nonlinear ordinary differential equations with associated boundary conditions. The Matlab bvp4c solver featuring a shooting technique and the fourth-order Runge–Kutta–Fehlberg method are used to numerically solve the governing dimensionless boundary value problem. Multivariate analysis is also performed to examine the thermal characteristics. An increase in rotation parameter induces a reduction in the radial velocity, whereas it elevates the tangential velocity. Greater electrical field parameter strongly damps the radial velocity whereas it slightly decreases the tangential velocity. Increasing magnetic parameter also damps both the radial and tangential velocities. An increment in electroosmotic parameter substantially decelerates the radial flow but has a weak effect on the tangential velocity field. Increasing permeability parameter (inversely proportional to permeability) markedly damps both radial and tangential velocities. The pressure gradient is initially enhanced near the disk surface but reduced further from the disk surface with increasing magnetic parameter and electrical field parameter, whereas the opposite effect is produced with increasing Joule dissipation. Increasing magnetic and rotational parameters generate a strong heating effect and boost temperature and thermal boundary layer thickness. Nusselt number is boosted with increasing Brinkman number (viscous heating effect) and Reynolds number. The simulations are relevant to electromagnetic coating flows, bioreactors and electrochemical sensing technologies in medicine.  相似文献   

2.
The problem of steady conjugate heat transfer through an electrically-conducting fluid for a vertical flat plate in the presence of transverse uniform magnetic field taking into account the effects of viscous dissipation, Joule heating, and heat generation is formulated. The general governing equations which include such effects are made dimensionless by means of an apposite transformation. The ultimate resulting equations obtained by introducing the stream function with the similarity variable are solved numerically using the implicit finite difference method for the boundary conditions based on conjugate heat transfer process. A representative set of numerical results for the velocity and temperature profiles, the skin friction coefficients as well as the rate of heat transfer coefficient and the surface temperature distribution are presented graphically and discussed. A comprehensive parametric study is carried out to show the effects of the magnetic parameter, viscous dissipation parameter, Joule heating parameter, conjugate conduction parameter, heat generation parameter and the Prandtl number on the obtained solutions.  相似文献   

3.
The present study aims to discuss the Williamson fluid flow and heat transfer across a permeable stretching cylinder with heat generation/absorption effects. The effects of viscous dissipation, Joule heating, and magnetic field are also taken into account. The BVP-4C numerical solver in MATLAB is adopted for all the numerical simulations in the present study. For this, the modeled partial differential equations are translated into dimensionless ordinary differential equations using some well-developed similarity transformations. A good agreement between the numerical results of the present study and existing literature is exhibited. The dimensionless physical parameters being investigated are Reynolds number, magnetic field parameter, suction parameter, heat source/sink parameter, Williamson fluid parameter, and mixed convection parameter. The numerical calculations are also performed for the skin friction coefficient and local Nusselt number to get an understanding of the shear stress rate and heat transfer rate, respectively. Furthermore, the impact of all these physical parameters on the velocity and temperature profiles is investigated and represented throughout the literature.  相似文献   

4.
Present research article investigate the heat and mass transfer characteristics of unsteady magnetohydrodynamic Casson nanofluid flow between two parallel plates under the influence of viscous dissipation and first order homogeneous chemical reaction effects. The impacts of thermophoresis and Brownian motion are accounted in the nanofluid model to disclose the salient features of heat and mass transport phenomena. The present physical problem is examined under the presence of Lorentz forces to investigate the effects of magnetic field. Further, the viscous and Joule dissipation effects are considered to describe the heat transfer process. The non‐Newtonian behaviour of Casson nanofluid is distinguished from those of Newtonian fluids by considering the well‐established rheological Casson fluid model. The two‐dimensional partial differential equations governing the unsteady squeezing flow of Casson nanofluid are coupled and highly nonlinear in nature. Thus, similarity transformations are imposed on the conservation laws to obtain the nonlinear ordinary differential equations. Runge‐Kutta fourth order integration scheme with shooting method and bvp4c techniques have been used to solve the resulting nonlinear flow equations. Numerical results have been obtained and presented in the form of graphs and tables for various values of physical parameters. It is noticed from present investigation that, the concentration field is a decreasing function of thermophoresis parameter. Also, concentration profile enhances with raising Brownian motion parameter. Further, the present numerical results are compared with the analytical and semianalytical results and found to be in good agreement.  相似文献   

5.
This study presents a comprehensive investigation on hydrodynamic and thermal transport properties of mixed electroosmotically and pressure driven flow in microtubes. Particular emphasis is given to investigating the combined consequences of viscous dissipation, non-uniform Joule heating, and variable thermophysical properties. Analytical solutions are obtained using the Debye–Hückel linearization and constant fluid properties assumption, while a numerical solution is presented for variable fluid properties and non-uniform distribution of Joule heating. The results indicate that, viscous heating effect is pronounced significantly when a favorable pressure gradient exists and cannot be neglected at low values of the dimensionless Debye–Hückel parameter. Moreover, uniform Joule heating assumption, even at low zeta potentials, may reduce the accuracy of the predicted thermal features considerably. The wall shear stress is found to be strongly dependent upon the zeta potential, which is underestimated by the Debye–Hückel linearization. Compared with the constant fluid properties case, decreasing electrical resistivity of the fluid by increasing temperature, amplifies the total energy generation due to the Joule heating and reduces the Nusselt number.  相似文献   

6.
The influence of viscous dissipation on thermally fully-developed, electro-osmotically generated flow has been analyzed for a parallel plate microchannel and circular microtube under imposed constant wall heat flux and constant wall temperature boundary conditions. Such a flow is established not by an imposed pressure gradient, but by a voltage potential gradient along the length of the tube. The result is a combination of unique electro-osmotic velocity profiles and volumetric heating in the fluid due to the imposed voltage gradient. For large ratio of the microtube radius (or microchannel half-width) to Debye length, the wall-normal fluid velocity gradients can be extremely high, which has the potential for significant viscous heating. The solution for the fully-developed, dimensionless temperature profile and corresponding Nusselt number have been determined for both geometries and for both thermal boundary conditions. It is shown that three dimensionless parameters govern the thermal transport: the relative duct radius (ratio of the duct radius or plate gap half-width to Debye length), the dimensionless volumetric source (ratio of Joule heating to wall heat flux), and a dimensionless parameter that relates the magnitude of the viscous heating to the Joule heating. Surprisingly, it is shown that the influence of viscous dissipation is only important at low values of the relative duct radius. For magnitudes of the dimensionless parameters which characterize most practical electro-osmotic flow applications, the effect of viscous dissipation is negligible.  相似文献   

7.
The current study focuses on investigating the influence of transverse magnetic field, variable viscosity, buoyancy, variable Prandtl number, viscous dissipation, Joulian dissipation, and heat generation on the flow of nanofluids over thin needle moving in parallel stream. The theory of nanofluids that includes the Buongiorno model featured by slip mechanism, such as Brownian motion and thermophoresis, has been implemented. Further, convective boundary condition and zero mass flux condition are considered. The nondimensionally developed boundary layer equations have been solved by Runge–Kutta–Fehlberg method with shooting technique for different values of parameters. The most relevant outcomes of the present study are that the augmented magnetic field strength, viscosity parameter, buoyancy ratio parameter, and the size of the needle undermine the flow velocity, establishing thicker velocity boundary layer while Richardson number and Brownian motion show opposite trend. Another most important outcome is that increase in the size of the needle, viscous dissipation, convective heating, and heat generation upsurges the fluid temperature, leading to improvement in thermal boundary layer. The effects of different natural parameters on wall shear stress and heat and mass transfer rates have been discussed.  相似文献   

8.
Numerous industrial and engineering systems, like, heat exchangers, chemical action reactors, geothermic systems, geological setups, and many others, involve convective heat transfer through a porous medium. The diffusion rate, drag force, and mechanical phenomenon are dealt with in the Darcy–Forchheimer model, and hence this model is vital to study the fluid flow and heat transport analysis. Therefore, numerical simulation of the Darcy–Forchheimer dynamics of a Casson material in a circular tube subjected to the energy losses due to the viscous heating and Joule dissipation mechanisms is performed. The novelty of the present investigation is to scrutinize the convective heat transport characteristics in a circular tube saturated with Darcy–Forchheimer porous matrix by utilizing the non-Newtonian Casson fluid. The flow occurs due to the elongation of the surface of a tube with a uniform heat-based source/sink. The similarity solution of the nonlinear problem was obtained using dimensionless similarity variables. The effects of operating parameters related to the flow phenomena are analyzed. Further, the friction factor and Nusselt number are also analyzed in detail. The present flow model ensures no flow reversal and acts as a coolant of the heated cylindrical surface; the existence of the magnetic field, as well as an inertial coefficient, acts as the momentum-breaking forces, whereas Casson fluidity builds it. The Joule heating phenomenon enhances the magnitude of temperature. The thermal field of the Casson fluid is higher at the surface of the circular pipe due to convective thermal conditions.  相似文献   

9.
This paper presents the analytical study of heat and mass transfer in a two-dimensional time-dependent flow of Williamson nanofluid near a permeable stretching sheet by considering the effects of external magnetic field, viscous dissipation, Joule heating, thermal radiation, heat source, and chemical reaction. Suitable transformations are introduced to reformulate the governing equations and the boundary conditions convenient for computation. The resulting sets of nonlinear differential equations are then solved by the homotopy analysis method. The study on the effects of relevant parameters on fluid velocity, temperature, and concentration profiles is analyzed and presented in graphical and tabular forms. Upon comparison of the present study with respect to some other previous studies, a very good agreement is obtained. The study points out that the transfer of heat can substantially be enhanced by decreasing viscoelasticity of the fluid and the transfer of mass can be facilitated by increasing permeability of the stretching sheet.  相似文献   

10.
In this article, the effects of viscous dissipation and internal heat generation/absorption on combined heat and mass transfer MHD viscous fluid flow over a moving wedge in the presence of mass suction/injection with the convective boundary condition are carried out numerically for the various values of dimensionless parameters. With the help of similarity transformation, the momentum, energy, and concentration equations are reduced to a set of dimensionless non‐linear ordinary differential equations. The significance of the dimensionless velocity, temperature, mass profiles, and their gradients are presented in graphical form. Three types of flows—particularly the flat plate, vertical wedge, and stagnation point flows—in favorable and unfavorable regimes are analyzed. The obtained results confirm that the flow field is substantially influenced by the magnetic, stretching/shrinking, pressure, Prandtl number, heat generation/dissipation, and mass suction/injection parameters. Current results indicate that stretching a wall boundary causes an increase in velocity, temperature, shear stress, temperature, and mass gradients while shrinking causes a decreasing trend with these profiles. The special modified form of the current problem is found to be in good agreement with the other published data. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 43(1): 17–38, 2014; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21063  相似文献   

11.
Analytical solutions are obtained for the temperature and Nusselt number distribution in the thermal entrance region of a parallel plate microchannel under the combined action of pressure-driven and electroosmotic transport mechanisms, by taking into account the effects of viscous dissipation, Joule heating and axial conduction simultaneously, in the framework of an extended Graetz problem. Step changes in wall temperature are considered to represent physically conceivable thermal entrance conditions. The solution of the temperature distributions at the various channel sections essentially involves the determination of a set of eigenvalues and eigenfunctions corresponding to a Sturm Liouiville problem with non self-adjoint operators. The resultant eigenfunctions are non orthogonal in nature, and are obtained in the forms of hypergeometric functions. Parametric variations on the effects of the relative strengths of the pressure gradients and the electric field, ratio of the rate of heat generation to the rate of wall heat transfer, and the Peclet number are analyzed in details, in terms of their influences on the temperature field as well as the Nusselt number distribution.  相似文献   

12.
This study investigates the influence of viscous dissipation on thermal transport characteristics of the fully developed combined pressure and electroosmotically driven flow in parallel plate microchannels subject to uniform wall heat flux. Closed form expressions are obtained for the transverse distributions of electrical potential, velocity and temperature and also for Nusselt number. From the results it is realized that the Brinkman number has a significant effect on Nusselt number. Generally speaking, to increase Brinkman number is to decrease Nusselt number. Although the magnitude of Joule heating can affect Brinkman number dependency of Nusselt number, however the general trend remains unchanged. Depending on the value of flow parameters, a singularity may occur in Nusselt number values even in the absence of viscous heating, especially at great values of dimensionless Joule heating term. For a given value of Brinkman number, as dimensionless Debye–Huckel parameter increases, the effect of viscous heating increases. In this condition, as dimensionless Debye–Huckel parameter goes to infinity, the Nusselt number approaches zero, regardless of the magnitude of Joule heating. Furthermore, it is realized that the effect of Brinkman number on Nusselt number for pressure opposed flow is more notable than purely electroosmotic flow, while the opposite is true for pressure assisted flow.  相似文献   

13.
A theoretical analysis is presented for fully developed convective heat transfer in two immiscible fluid layers confined within parallel plate microchannels subject to combined effects of axial pressure gradients and imposed electrical fields. Assuming desperate zeta potentials at the interfaces thus formed, closed-form expressions are derived for the velocity and temperature distributions under fully developed conditions, with uniform wall heat flux boundary conditions. For the heat transfer analysis, the viscous dissipation effects are neglected as compared to the Joule heating effects. Results are subsequently obtained for different ranges of the ratios of various electrical properties of the two fluid layers and various relative strengths of the ratios of the electrical fields and the imposed pressure gradients. These results demonstrate the effects of the applied electric fields and pressure gradients, presence of external heat source or sink and interfacial positions on the temperature distributions in the two layers and the corresponding Nusselt numbers.  相似文献   

14.
Abstract

In this paper, the effects of viscous dissipation, Joule heating, and magnetic field on the Hiemenz flow of a micropolar incompressible, viscous, electrically conducting fluid impinging normal to a plane are investigated. Numerical solutions for the governing momentum, angular momentum, and energy equations are given. A discussion has been provided for the effects of Hartman number, Prandtl number, Eckert number, and the micropolar parameters on two-dimensional flow of a fluid near a stagnation point (Hiemenz flow). Results for the details of the velocity, angular velocity, and temperature distributions as well as the skin friction, wall couples stress, rate of heat transfer, and thermal boundary layer thickness are shown graphically.  相似文献   

15.
Buoyant laminar flow in a square lid-driven enclosure is analysed. The vertical sides are kept isothermal at different temperatures, while the horizontal sides are insulated. Assisting mixed convection flow due to uniform motion of the top side is considered. The governing balance equations are solved numerically by employing a Galerkin finite element method. The effects of viscous dissipation and pressure work are taken into account. In order to investigate the influence of these effects, the Nusselt number is evaluated with respect to the heat fluxes at both vertical sides, for different values of the Rayleigh number and of the Péclet number based on the lid velocity. Two sample fluids are considered: a gas and a highly viscous liquid. In the framework of the Oberbeck–Boussinesq approximation, a comparison is made between three different energy balance models: (A) enthalpy formulation (pressure work and viscous dissipation are included); (B) internal-energy formulation (viscous dissipation is included); (C) both pressure work and viscous dissipation are neglected. It is shown that, in the absence of a lid motion, the three models yield substantially the same predictions. On the other hand, when the forced flow induced by the lid motion becomes sufficiently large, the three models yield discrepant results, thus implying that pressure work and viscous dissipation are not negligible. Moreover, it is shown that, in this case, model (A) yields unphysical results, while model (B) leads to reasonable predictions.  相似文献   

16.
The combined effects of viscous dissipation and Joule heating on steady magnetohydrodynamics (MHD) flow of an electrically conducting viscous incompressible non-Newtonian Bingham fluid over a porous rotating disk in the presence of Hall and ion-slip currents is studied. An external uniform magnetic field is applied in the z-direction and the fluid is subjected to uniform suction. Numerical solutions are obtained for the governing momentum and energy equations. Results for the details of the velocity as well as temperature are shown graphically and the numerical values of the skin friction and the rate of heat transfer are entered in tables.  相似文献   

17.
This investigation is concentrated on the second law analysis of a magnetohydrodynamics Eyring-Powell fluid in a vertical microporous channel with the convective boundary conditions under the impacts of heat generation, viscous dissipation, exponential space, temperature dependence, and Joule heating. The reduced form of the governing equations is obtained with the aid of applying nondimensional variables and is resolved using Runge-Kutta-Fehlberg's fourth fifth-order method. The various relevant parameters that affect the heat transfer and entropy have been discussed in detail through graphs. It is found that the impacts of suction/injection, viscous dissipation, and convective conditions are important and the thermal performance can be improved with these factors. The generation of entropy boosts up with the impacts of radiation, space/temperature-dependent, and Biot number and slows down with Eyring-Powel parameters. Furthermore, the heat transfer rate amplifies with the magnetic number and the drag force intensifies with the Brinkman parameters. The comparison of results has been performed and it provides an excellent agreement.  相似文献   

18.
The effects of Joule heating, Hartman, Brinkman, and Reynolds numbers on the flow pattern and thermal characteristics of force convection flow through a parallel-plate microchannel are investigated in various nanoparticles volume fraction. Water–Al2O3 is considered as the working nanofluid while taking viscous dissipation effect (VDE) into account. The mid-section of the microchannel is heated with a constant uniform heat flux and influenced by a magnetic field with a uniform strength. The effective thermal conductivity and viscosity of nanofluid are calculated through a new correlation in which the influence of Brownian motion is considered. A control volume finite different scheme, along with the SIMPLE algorithm, is adopted to conduct the numerical analyses and solve the discrete equations. Contour plots of streamlines and isotherms are presented to graphically display the impact of the investigated variables. Furthermore, the values of the Nusselt number for the minimum temperature and maximum velocity are calculated and presented through figures. The results show that all of the Brinkman, Joule, nanofluid concentration, and Hartmann numbers have decreasing effect on the heat transfer. The conclusion is supported by the fact that all the aforementioned factors increase the temperature throughout the flow field. The higher the flow field temperature, the lower the heat transfer from the wall. Higher Brinkman number leads to the friction intensification between flow layers due to considering VDE. It can be said about the Joule heating that, since this term has an inverse relation with the squared velocity, increase in Joule number is followed by a reduction of heat transfer from the walls. Also, an increase in the nanofluid concentration increases the temperature throughout the microchannel leading to heat transfer deterioration.  相似文献   

19.
An analysis is presented to study the effect of viscous and Joule heating on MHD-free convection flow with a variable plate temperature in a micropolar fluid in the presence of uniform transverse magnetic field. The presence of dissipation increases both the skin friction and the rate of heat transfer at the surface. The friction factor and heat transfer rate decrease with an increase in the magnetic field parameter M and micropolar parameter Δ.  相似文献   

20.
A mathematical model and an explicit finite-difference iterative integration algorithm for two-dimensional laminar steady flow and solidification of an incompressible, viscous, electrically conducting but neutrally charged melt containing electrically charged panicles and exposed to an externally applied electrostatic field were developed. The system of governing electrohydrodynamic equations was derived from a combination of Maxwell's equations and the Navier-Stokes equations, including thermally induced buoyancy, latent heat release, and Joule heating, while accounting for the mushy region. Physical properties were treated as arbitrarily temperature-dependent. Numerical results demonstrate the existence of strong electrothermoconvective motion in the melt and quantify its influence on the amount of accrued solid, deposition pattern of the electrically charged particles inside the accrued solid, and the melt/solid interface shape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号