首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A study of Soret–Dufour effects along with chemical reaction, viscous dissipation combining on MHD Joule heating for viscous incompressible flow is presented. It is assumed that fluid is flowing past an angled stretching sheet saturated in porous means. The slip conditions of velocity, concentration, and temperature are accounted for at the boundary. The mathematical expression of the problem contains highly nonlinear interconnected partial differential equations. To convert governing equations into ordinary differential equations, appropriate similarity transformations were utilized. These differential equations with boundary constraints are resolved by homotopy analysis method. Expression for velocity, concentration, and temperature are derived in the form of series. Effects of numerous physical parameters, for example, Schmidt number, Soret number, buoyancy ratio parameter, slip parameter, and so forth, on various flow characteristics are presented through graphs. Numerous values of velocity, concentration, and temperature gradient are tabulated against different parameters. Results show that the fluid velocity increases by enhancing the Soret number, Dufour number, or permeability parameter. The fluid's concentration rises as the Soret number increases, while it falls as the Dufour number, chemical reaction parameter, or permeability parameter increases.  相似文献   

2.
The purpose of this study is to examine the magnetohydrodynamic mixed convection Casson fluid flow over an inclined flat plate along with the heat source/sink. The present flow problem is considered under the assumption of the chemical reaction and thermal radiation impacts along with heat and mass transport. The leading nonlinear partial differential equations of the flow problem were renovated into the nonlinear ordinary differential equations (ODEs) with the assistance of appropriate similarity transformations and then we solved these ODEs with the employment of the bvp4c technique using the computational software MATLAB. The consequences of numerous leading parameters such as thermophoretic parameter, local temperature Grashof number, solutal Grashof number, suction parameter, magnetic field parameter, Prandtl number, chemical reaction parameter, Dufour number, Soret number, angle of inclination, radiation parameter, heat source/sink, and Casson parameter on the fluid velocity, temperature, and concentration profiles are discoursed upon  and presented through different graphs. Some important key findings of the present investigation are that the temperature of the Casson fluid becomes lower for local temperature Grashof number and solutal Grashof number. It is initiated that the Casson fluid parameter increases the velocity of the fluid whereas the opposite effect is noticed in the temperature profile. Higher estimation of Prandtl number and magnetic parameter elevated the Casson fluid concentration. Finally, the skin friction coefficient, Nusselt number, and Sherwood number are calculated and tabulated. It is also examined that the Nusselt number is weakened for both the Dufour number and Soret number but the skin fraction coefficient is greater for both the Dufour number and Soret number.  相似文献   

3.
The present study is focused on the Soret and Dufour effects on magnetohydrodynamics unsteady fluid flow over an accelerated inclined vertical plate with thermal radiation and heat source. Solution of the nondimensional governing differential equations are worked out by the efficient Galerkin finite element method. The influence of several relevant flow parameters on velocity, temperature, and concentration distributions, as well as the numerical results, are studied and graphically displayed. The nondimensional skin friction and the rate of heat and mass transfer parameters are presented in the Tables 1-3 below. Raising the Soret number results in growing concentrations, but the converse is true for the Schmidt number. Skin friction reduces when Soret and Dufour numbers increase. The present simulations apply to the processing of magnetic materials in the chemical and metallurgical industries.  相似文献   

4.
Here, a study of steady, magnetohydrodynamic flow of incompressible, cold fluid around a moving plate with a non-Darcian porous medium in existence of heat source and nth-order chemical reaction incorporating Soret and Dufour effects is considered. MATLAB bvp4c technique is used to solve the prevailing equations. Variations in velocity, temperature and concentration are analysed. It is observed that the applicable parameters such as non-Darcy, Soret, Dufour, chemical reaction play a significant role in controlling the flow. Chemical reaction parameter reduces skin friction, heat transfer, and mass transfer while Eckert number enhances the mass transfer and skin friction.  相似文献   

5.
This paper analyzes the Joule heating, Dufour number, and Soret number effects on hydromagnetic pulsatile flow of a Casson fluid in a vertical channel filled with a non-Darcian porous medium. The governing partial differential equations (PDEs) of the Casson fluid flow are transformed to ordinary differential equations (ODEs) using perturbation technique and solved by employing shooting method with Runge–Kutta (R–K) fourth-order technique using MATHEMATICA function NDSolve. The influence of Forchheimer number, Casson fluid parameter, Dufour number, radiation parameter, and Soret number on flow variables has been studied and the numerical results obtained are presented. The results reveal that the velocity rises with the rise of Darcy number, whereas it decreases for a given rise in the Forchheimer number. Furthermore, the temperature distribution enhances by increasing the Dufour number.  相似文献   

6.
In this article, free convection of heat and mass transfer along a vertical wavy surface in a Newtonian fluid saturated Darcy porous medium is studied by considering cross diffusion (namely the Soret and the Dufour effects) in the medium. The vertical wavy wall and the flow governing equations are transformed to a plane geometry case by using a suitable transformation. Then a similarity solution to this problem is presented under the large Darcy–Rayleigh number assumption. The governing partial differential equations are reduced to a set of ordinary differential equations that are integrated using numerical methods to study the nature of the non-dimensional heat and mass transfer coefficients in the medium. The results are presented for a range of the flow governing parameters such as the diffusivity ratio parameter, the buoyancy ratio parameter, the Soret parameter, the Dufour parameter and the amplitude of the wavy surface.  相似文献   

7.
The numerical analysis is conducted to evaluate the heat generating as well as Soret–Dufour influences on magnetohydrodynamic unsteady chemically reacting fluid. It is owing to an exponentially stimulating perpendicular porous plate entrenched in the absorbent medium by considering ramped surface temperatures and concentrations in the endurance of thermal radiating. The fundamental governing set of equations of the fluid dynamics in the flow is converted into dimensionless form by inserting suitable dimensionless parameters and variables, and the resulting equations are numerically solved by the efficient Crank–Nicolson implicit finite difference method. The influence of several important substantial parameters into the model on the velocity, temperature, and concentration of the fluid, in addition to the skin-frictions coefficient, Nusselt's number along with Sherwood's number for both thermal conditions has been studied and explored intensely by making use of graphs and tables. It is discovered that, with mounting values of Dufour, heat generating as well as thermal radiating parameters, the fluid temperatures, and velocity enhanced. Likewise, it is noticed that increasing the Soret parameter causes escalated fluid velocity and concentration, whereas the reverse result is noted with the chemical reaction parameter.  相似文献   

8.
This article addresses the bioconvection in a porous cavity associated with Soret and Dufour effects. The bioconvective flow in a porous medium is based on Hillesdon and Pedley's model and is governed by nonlinear partial differential equations. These equations are transformed into a dimensionless form with suitable nondimensional parameters. The finite element method is employed to solve the dimensionless equations. The outcomes of the study are presented by streamlines, temperature distributions, isoconcentrations of solute, nanoparticles, and microorganisms. Furthermore, the tendency of average Nusselt number and average Sherwood number and the influence of Soret parameter, Dufour parameter, Peclet number, and bioconvective Rayleigh number is interpreted. Thermophoresis and Soret number show a strong effect on the concentration of nanoparticles. Brownian motion and thermophoresis exhibit a significant effect on the density distributions of microorganisms. The novelty of the paper is to combine the effects of Soret–Dufour and oxytactic bioconvection. The present study can be useful in the following applications: microbial-enhanced oil recovery, toxin removal, antibiotics, and modeling of microfluidic devices.  相似文献   

9.
The aim of the present paper is to investigate the Soret effect due to mixed convection on unsteady magnetohydrodynamics flow past a semi-infinite vertical permeable moving plate in the presence of thermal radiation, heat absorption, and homogenous chemical reaction subjected to variable suction. The plate is assumed to be embedded in a uniform porous medium and moves with a constant velocity in the flow direction in the presence of a transverse magnetic field. The equations governing the flow are transformed into a system of nonlinear ordinary differential equations by using the perturbation technique. Graphical results for the velocity distribution, temperature distribution, and concentration distribution based on the numerical solutions are presented and discussed. Also, the effects of various parameters on the skin-friction coefficient and the rate of heat transfer in the form of Nusselt number, and rate of mass transfer in the form of Sherwood number at the surface are discussed. Velocity distribution is observed to increase with an increase in Soret number and in the presence of permeability, whereas it shows reverse effects in the case of the aligned magnetic field, inclined parameter, heat absorption coefficient, magnetic parameter, radiation parameter, and chemical reaction parameter.  相似文献   

10.
This paper examined the mechanism of both positive and negative effects of Soret‐Dufour with heat and mass transfer processes over an accelerating permeable surface. The partial differential flow equations were simplified using similarity variables, and the resulting equations were solved numerically using the spectral homotopy analysis method (SHAM). The SHAM is used in separating nonlinear equations into linear and nonlinear. The physics of each pertinent flow parameters was used to examine their influence on velocity, temperature, and concentration fields. The effect of Soret‐Dufour was examined separately, and its negative effect was used to determine its influence on velocity, temperature, and concentration fields. The result revealed that positive Soret‐Dufour enhances the boundary layer, whereas negative Soret‐Dufour parameter decreases the boundary layer. The result presented in this paper is in good agreement with existing works in literature.  相似文献   

11.
The free convection boundary layer flow over an arbitrarily inclined heated plate in a porous medium with Soret and Dufour effects is studied by transforming the governing equations into a universal form. The generalized equations can be used to derive the similarity solutions for limiting cases of horizontal and vertical plates and to calculate the heat and mass transfer characteristics between these two limiting cases. The heat and mass transfer characteristics are presented as functions of Soret parameter, Dufour parameter, inclination variable, Lewis number, and buoyancy ratio. Results show that an increase in the Dufour parameter tends to decrease the local heat transfer rate, and an increase in the Soret parameter tends to decrease the local mass transfer rate. As the inclination variable increases, the local Nusselt number and the local Sherwood number decrease from their respective values for horizontal plates, reach their respective minima, and then increase to their respective values for vertical plates. The minima are where the tangential and normal components of buoyancy force are comparable.  相似文献   

12.
The significance of this article lies in explaining the influence of Soret and Dufour numbers on an unsteady MHD free convection of flow of heat and mass transfer through porous media. The substances and radiation along the viscous, incompressible, and conductive compounds respond to the unstable convection of the liquid. Using physical quantities, the dimensional governing equations are converted to non-dimensional equations. Finite element Galerkin method is applied to numerically solve the resulting partial differential equations. Flow parameters on velocity, temperature, and concentration are studied and explained graphically to reflect their effects. Similarly, the skin friction number and Nusselt number are also observed and recorded in tables.  相似文献   

13.
This contribution examines the influence of Soret and Dufour on an incompressible viscous fluid flow across a vertical cone. The flow model is framed in the form of mathematical governing equations and a nondimensionalization is performed on them for ease of the numerical computations' examination; the obtained nonsimilarity equations are solved numerically through the bivariate Chebyshev spectral collocation quasi-linearization method. Outcomes of the flow characteristics, velocity, temperature, concentration, skin friction rate, heat, and mass transfer rates are analyzed with the variations of governing parameters, Prandtl number, buoyancy parameter, Schmidt number, buoyancy ratio, Soret and Dufour parameters at various stream-wise spots of the flow. To certify the exactness of the listed computations, we performed a comparison with prior published computations, which were found with great agreement, and the residual analysis study was also portrayed to reflect the convergence and stability of the adopted numerical technique.  相似文献   

14.
In this analysis, the effect of Catteneo–Christov model on heat alongside mass transport magnetohydrodynamics of a Casson nanoliquid with thermal radiation and Soret–Dufour mechanism is considered. The fluid flow is considered through porous media as the thermophysical attributes such as viscosity along with thermal conductivity are considered to be constant. Suitable similarity transformations were employed on the governing coupled flow equation to yield total differential equations (ODE). An accurate and newly developed spectral method called spectral homotopy analysis method (SHAM) was employed to provide solution to the simplified equations. The numerical method of homotopy analysis method (HAM) is SHAM. SHAM portrays the division of nonlinear equations into linear as well as nonlinear parts. The findings in this study show that an increment in the Casson parameter is seen to elevate the velocity plot at the wall and lessen the velocity far away from the plate. An increase in the Brownian motion and thermophoresis term is observed to speed up the local skin friction coefficient.  相似文献   

15.
The objective of the present study is to investigate the effects of the variable magnetic field, chemical reaction, thermal radiation, Soret effect, and variable heat absorption on the fluid flow and heat and mass transfer of an unsteady Casson fluid past a stretching surface in a saturated porous medium. Velocity slip near the plate and conjugate heating boundary conditions in heat and mass transfer have been considered in this study. Due to the complexities in boundary conditions, the analytic solution of the governing equations of the present model is not possible. Thus, to overcome these issues, the coupled partial differential equations of the model are converted into a set of ordinary differential equations using similarity transformation. These equations have then been solved numerically using the fourth-order Runge-Kutta technique via the shooting method. The effects of various pertinent flow parameters on the velocity, concentration, and temperature field have been studied graphically. For the field of engineering, to get an insight into the physical quantities, especially Nusselt number, Sherwood number, and skin friction, their numerical values have been estimated against various parameters and presented in tables. From the tabulated values, it has been perceived that the shear stress increases with an increase in magnetic parameter, unsteadiness parameter, Casson parameter, and heat source parameter, whereas the Biot number shows the reverse trend. The mixture of porous media has justified that the heat transport process over a stretching sheet results in averting heat loss and accelerating the process of cooling, which is a significant outcome of the study. Furthermore, it has also been revealed that with the increase in the Soret effect and magnetic field, there is a reduction in the fluid velocity and temperature near the plate, whereas there is an increase in the species concentration. It has also been mentioned that the effects of the variable magnetic field have been widely applied in various engineering applications like magnetohydrodynamic (MHD) propulsion forces, rate of cooling, MHD power generation, and so on.  相似文献   

16.
This paper investigates the heat and mass transfer of an unsteady, magnetohydrodynamic incompressible water-based nanofluid (Cu and TiO2) flow over a stretching sheet in a transverse magnetic field with thermal radiation Soret effects in the presence of heat source and chemical reaction. The governing differential equations are transformed into a set of nonlinear ordinary differential equations and solved using a regular perturbation technique with appropriate boundary conditions for various physical parameters. The effects of different physical parameters on the dimensionless velocity, temperature, and concentration profiles are depicted graphically and analyzed in detail. Finally, numerical values of the physical quantities, such as the local skin-friction coefficient, the Nusselt number, and the Sherwood number, are presented in tabular form. It is concluded that the resultant velocity reduces with increasing Jeffrey parameter and magnetic field parameter. Results describe that the velocity and temperature diminish with enhancing the thermal radiation. Both velocity and concentration are enhanced with increases of the Soret parameter. Also, it is noticed that the solutal boundary layer thickness decreases with an increase in chemical reaction parameters. This is because chemical molecular diffusivity reduces for higher values of chemical reaction parameter. Also, water-based TiO2 nanofluids possess higher velocity than water-based Cu nanofluids. Comparisons with previously published work performed and the results are found to be in excellent agreement. This fluid flow model has several industrial applications in the field of chemical, polymer, medical science, and so forth.  相似文献   

17.
The effect of thermophoresis on a magnetic field generation in a non‐Daracian porous medium flow with the variation of the viscosity fluid in the presence of Soret and Dufour, thermal reaction and diffusion effects over a stretching surface is investigated in the present analysis. The governing equations of continuity, momentum, energy, and concentration are transformed into nonlinear ordinary differential equations, using similarity transformations and then solved numerically. The influence of various physical parameters on velocity, temperature, and concentration profiles are illustrated graphically, and the physical aspects are discussed in detail. Finally, the effects of related physical parameters on the skin friction, the rate of heat and mass transfer are also studied.  相似文献   

18.
Heat transportation is a novel prospective in many thermal processes and presents dynamic applications in industrial and thermal polymer processing optimization. The importance of heat transportation is noted in heat exchangers, production of crude oils, combustion, petroleum reservoirs turbine systems, thermal systems, porous media, modeling of resin transfer nuclear reactions etc. In view of such thermal applications the main objective here is to examine entropy in unsteady magnetohydrodynamic of Casson fluid flow. Radiation in addition to dissipation and ohmic heating are analyzed. Entropy is scrutinized employing thermodynamic second law. Characteristics of Soret and Dufour are also examined. Main objective here is to examine irreversibility. Dimensionless version of differential system is obtained through suitable variables. The obtained partial differential system is solved through numerical scheme (Finite difference method). Physical features of fluid flow, temperature, entropy optimization and concentration have been explained. Variations of parameters on drag force, Nusselt number and solutal transfer rate are graphically discussed. Higher fluid parameter leads to improve in velocity and entropy rate. Larger values of radiation parameter boost up thermal field. Entropy rate and velocity have reverse trend for magnetic field. An intensification for concentration is found through Soret number. Higher approximation of Reynold number enhances skin friction and velocity. Thermal transfer rate is augmented versus radiation and magnetic variables.  相似文献   

19.
This work studies the heat and mass transfer characteristics of natural convection near a vertical wavy cone in a fluid saturated porous medium with Soret and Dufour effects. The surface of the wavy cone is kept at constant temperature and concentration. The governing equations are transformed into a set of coupled differential equations, and the obtained boundary layer equations are solved by the cubic spline collocation method. The heat and mass transfer characteristics are presented as functions of Soret parameter, Dufour parameter, half angle of the cone, Lewis number, buoyancy ratio, and dimensionless amplitude. Results show that an increase in the Dufour parameter tends to decrease the local Nusselt number, and an increase in the Soret parameter tends to decrease the local Sherwood number. Moreover, a greater half angle of the cone leads to a greater fluctuation of the local Nusselt and Sherwood numbers with the streamwise coordinates.  相似文献   

20.
This work studies the Soret and Dufour effects on the boundary layer flow due to natural convection heat and mass transfer over a vertical cone in a fluid-saturated porous medium with constant wall heat and mass fluxes. A similarity analysis is performed, and the obtained similar equations are solved by the cubic spline collocation method. The effects of the Dufour parameter, Soret parameter, Lewis number, and buoyancy ratio on the heat and mass transfer characteristics have been studied. The local surface temperature tends to increase as the Dufour parameter is increased. The effect of the Dufour parameter on the local surface temperature becomes more significant as the Lewis number is increased. Moreover, an increase in the Soret parameter leads to an increase in the local surface concentration and a decrease in the local surface temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号