首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Employing mixed adhesive joints has been proven to be very useful. This type of joint leads to improved performance by increasing strength and decreasing stresses in critical areas of the joint. In the same way, the use of the Intensity of Singular Stress Field (ISSF) has been shown to be suitable for adhesive joint calculation, since the adhesive strength can be controlled by the ISSF at the interface end. Four finite element models have been created by combining two epoxy adhesives with different mechanical properties, and therefore with different Young's moduli. New mixed adhesive joints have been compared with respect to only-one adhesive joints in terms of the ISSF. The results show a clear improvement with one of the configurations of mixed adhesive joints. A significant decrease of 35.64% in the ISSF is obtained compared to the only-one adhesive configuration.  相似文献   

2.
Polyurethane (PU) has been widely used as a glue in various areas. However, adhesion in the presence of water is greatly impeded and results in most synthetic adhesive failure. In this study, we designed and synthesized a novel PU construction; underwater PU adhesives were created by the incorporation of synthetic glycerol monomethacrylate (GMA). Furthermore, the urethane structure helped the adhesive eliminate the interfacial water barrier through interactions that were stronger than hydrogen bonding, and GMA as a crosslinking agent was used to generate post‐covalent‐crosslinking networks through radical polymerization. This enhanced the cohesion so the diffusion of water molecules could be overcome. Fourier transform infrared spectroscopy, thermogravimetric analysis, underwater adhesion measurements, and tensile tests were used to characterize the chemical and mechanical properties of the as‐obtained adhesive. This led to an adhesive with a better mechanical strength and interfacial adhesion in water, and the results show that the mechanical properties (tensile strength, Young's modulus, and tensile elongation) of the GMA–PU adhesive were higher than those of the pure PU. As for the 4% GMA, the tensile strength was enhanced by 24.3% and the elongation was enhanced by 125.23% over those of the pure PU. This confirmed that the incorporation of GMA into the PU matrix indeed induced increasing cohesion, and the sample's adhesive strength was 21.19 ± 3.9 MPa; this indicated a superior adhesive strength over that of the pure PU. In addition, we can foresee that underwater adhesion will play an important role in prospective surgery and engineering areas. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46579.  相似文献   

3.
Adhesive joints have been widely used in the automotive and aerospace fields in order to reduce the weights of products. The strength of adhesive joints, accordingly, needs to be increased and their behaviour should be predicted in order to achieve accurate designs. Studies to improve the strength of adhesive joints via surface treatment methods or by using two adhesives with different mechanical properties have been conducted. Various modeling methods also have been studied to predict the behaviour of adhesive joints. Unfortunately, the relationship between the bonding surface roughness and adhesive joint strength needs to be further clarified in order to be applied in practical design. As analyzing the relationship through a conventional finite element method assuming perfect bonding is challenging, the behaviour of the adhesive joints may be analyzed using a cohesive zone model or interface modeling methods from an integrating released energy point of view.

The strength of adhesive joints can be improved via micro-patterning due to the mechanical interlocking effect. Therefore, in this study, a micro-pattern was fabricated to improve the strength of adhesive joints. Various pattern-sized single leg bending joints and end notched flexure joints were manufactured and experimented upon. In this study, characteristics of each pattern surface were independently classified and modeled with a cohesive zone model. Finite element analyses were then performed and simulation results were compared with experimental results. The numerical results satisfactorily describe the experimental results, and failure loads were predicted with a maximum relative error of 8%. From these results, it may be concluded that the present findings can be applied to practical design and that the failure load can be predicted via a finite element analysis.  相似文献   

4.
The mechanical behaviour of bonded composite joints depends on several factors, such as the strength of the composite–adhesive interface, the strength of the adhesive and the strength of the composite itself. In this regard, a finite element model was developed using a combined interface–adhesive damage approach. A cohesive zone model is used to represent the composite–adhesive interface and a continuum damage model for the adhesive bondline. The influence of the composite–adhesive interfacial adhesion and the strength of the adhesive on the performance of a bonded composite single-lap joint was investigated numerically. A Taguchi analysis was conducted to rank the influence of material parameters on the static behaviour of the joint. It was found that the composite–adhesive interfacial fracture energy and the mechanical properties of the adhesive predominantly govern the static performance of the joints. A parametric study was performed by varying the most important material parameters, and a response surface equation is proposed to predict the joint strength. It is shown that the influence of experimental parameter variations, e.g. variation in adhesive curing and surface preparation conditions, can be numerically accommodated to investigate the static behaviour of bonded composite joints by combining finite element and statistical techniques. The methods presented could be used by practicing engineers to describe the failure envelope of adhesively bonded composite joints.  相似文献   

5.
Adhesively bonded joints are widely used in a variety of industrial and engineering activities. Their overall strength is dependent on the properties of the adhesives. In the present research, assessments of adhesive properties were performed systematically through defining both strength mixity and energy rate mixity and using them to characterize the overall strength of metallic single lap joints. By means of the cohesive zone model, the adhesive strength mixity was defined as the ratio of the shear and tensile separation strength, and the energy rate mixity was defined as the ratio of the area below the shear cohesive curve and the area below the tensile cohesive curve. For each specified group of mixity parameters, corresponding to the properties of a specified adhesive, the overall strengths and the critical displacements of bonded joints were characterized. A series of strength and energy rate mixities were taken into account in the present calculations. A comparison of the present calculations with some existing experiments was carried out for both brittle and ductile adhesives. Finally, in the calculations presented here, damage initiation and evolution of the adhesive layer were also undertaken. The results showed that the overall strength of the joints was significantly depended on the adhesive properties, which were characterized by the strength and energy rate mixities of the adhesive. Furthermore, the shear adhesive stress components played a dominate role in both the damage initiation and evolution in the adhesives, which were also affected by the overlap length of the joints.  相似文献   

6.
Adhesive bond strength of solid wood plays a key role in the efficient use of wood in a large number of engineering applications. In this study, the effects of amount of adhesive, pressing pressure, and pressing time on bonding strength of beech wood bonded with polyvinyl acetate adhesive were investigated and predicted by developing an artificial neural network (ANN) model. Experimental results have showed that bonding strength of wood samples increased generally by increasing amount of adhesive, pressing pressure, and pressing time. Besides, ANN analysis has yielded highly satisfactory results. The designed neural network model allows predicting the bonding strength of wood samples with mean absolute percentage error of 2.454% and correlation coefficient of 97.8% for testing phase. It is clear from the results that the model has a good learning and generalization ability. This model therefore can be used to predict bonding strength of beech samples bonded with polyvinyl acetate adhesive under given conditions. Consequently, this study provides beneficial insights for practitioners in terms of the safe and efficient use of wood as an engineering material in applications related to the strength of the bond between wood and adhesive.  相似文献   

7.
This paper presents an approach to predicting the strength of joints bonded by structural adhesives using a finite element method. The material properties of a commercial structural adhesive and the strength of single-lap joints and scarf joints of aluminum bonded by this adhesive were experimentally measured to provide input for and comparison with the finite element model. Criteria based on maximum strain and stress were used to characterize the cohesive failure within the adhesive and adherend failure observed in this study. In addition to its simplicity, the approach described in this paper is capable of analyzing the entire deformation and failure process of adhesive joints in which different fracture modes may dominate and both adhesive and adherends may undergo inelastic deformation. It was shown that the finite element predictions of the joint strength generally agreed well with the experimental measurements.  相似文献   

8.
This paper presents selected numerical analysis results on static strength of adhesive layers which were subjected to long-term loads. The numerical calculations involved modelling the properties of the adhesive layer using the Burger's model. The coefficients of the Burger's model components were determined on the basis of the creep curves of the adhesive. Some results were verified experimentally. It was ascertained that it is possible to examine the problems of long-term strength of adhesive bonds using numerical analysis under certain limitations. Numerical tests should reduce the need for time-consuming experiments. The investigations pointed out adhesive joints long-term strength dependence on creep curves of adhesives. The long-term strength of adhesive joints increased by reinforcement of the adhesive layer with glass fabric.  相似文献   

9.
When an adhesive joint is exposed to high environmental temperature, the tensile load capability of the adhesive joint decreases because both the elastic modulus and failure strength of the adhesive decrease. The thermo-mechanical properties of a structural adhesive can be improved by addition of fillers to the adhesive. In this paper, the elastic modulus and failure strength of adhesives as well as the tensile load capability of tubular single lap adhesive joints were experimentally and theoretically investigated with respect to the volume fraction of filler (alumina) and the environmental temperature. Also the tensile modulus of the filler containing epoxy adhesive was predicted using a new equation which considers filler shape, filler content, and environmental temperature. The tensile load capability of the adhesive joint was predicted by using the effective strain obtained from the finite element analysis and a new failure model, from which the relation between the bond length and the crack length was developed with respect to the volume fraction of filler.  相似文献   

10.
The current investigation focuses on the determination of the strength of adhesive-bonded single lap joints under impact with the use of a split Hopkinson pressure bar (Kolsky bar). For this, experiments were conducted at different loading rates, for identical metallic adherends bonded by a two-part epoxy adhesive. Four different types of specimens were adopted, all with a given adhesive thickness. The length of overlap and the width of the adherends were varied resulting in four different areas of overlap. It was found that the average strength, as calculated from the readings obtained from a Kolsky bar, increases with decrease of overlap area. An elastodynamic model for the shear strain of the adhesive-bonded single lap joint was developed to investigate this drastic effect of overlap area on the average strength of the joint. The mathematical model was found to be dependent on both the material properties of the adherend and adhesive, as well as the structural properties of the joint, viz. the width and the thickness of the adhesive layer. A combined experimental-numerical technique was used to predict the strain distribution over the length of the bond in the adhesive. It was found that the edges of the adhesive were subjected to maximum strain, while a large part of the adhesive was found to exhibit zero shear strain. The effect of the lap length and the width was studied individually. The cumulative effect of averaging the strain over the entire overlap area, was decreased shear strain for an increased overlap area. The Kolsky bar was identified to give conservative values of the shear strength of an adhesive bonded lap joint under high rates of loading.  相似文献   

11.
This paper deals with the application of fracture mechanics approaches for predicting the residual static strength and the crack kinking angle of adhesively bonded joints containing interfacial edge pre-cracks. The interfacial cracks are created due to different factors such as inappropriate surface preparation which cause a significant reduction of the joint strength. To investigate the residual strength of interfacial cracked adhesive joints and predict the crack kinking angle, three different approaches including the maximum tangential stress (MTS), the minimum strain energy density (SED) and the maximum tangential strain energy density (MTSED) were assessed. To this end, single lap joints (SLJs) containing a brittle adhesive material and with different pre-crack sizes and various substrate thicknesses were manufactured and tested. The results were also verified by applying fracture mechanics approaches on previously published experimental data. According to the results, it was concluded that in mode II dominant cases, the predictions of kinking angle using the MTS method was in good agreement with the experimental observations, while in mode I dominant cases the mentioned approach provided poor predictions. It was also found that the SED criterion could be a precise model for predicting the crack extension angle in mode I dominant conditions. The results also showed that the MTS criterion predicts the residual static strength of interfacial cracked adhesive joints very well.  相似文献   

12.
The study presented in this paper was carried out to investigate further the effects of strain rate on the strength of adhesively bonded single lap shear joints. Tests were carried out on two different configurations of adhesively bonded joints that were designed to exhibit different behaviours. In one configuration both adherends were made from a relatively low strength grade of aluminium such that both would exhibit significant plastic deformation prior to adhesive failure. The other configuration used one adherend that was significantly stronger such that only elastic deformation was exhibited prior to failure of the adhesive. The joint specimens were tested at several different strain rates using a servo-hydraulic test machine and the results analysed using statistical methods. To further understand the results Finite Element models of the joints were created using a Cohesive Zone Model to predict damage development and failure in the adhesive. The Design of Experiments procedure was used to study the effects of material parameters relating to both the adherends and the adhesive in the Finite Element models. The results of the testing suggested that the strength of joints formed from two adherends that exhibited plastic deformation prior to failure did not show statistically significant sensitivity to strain rate. Interpretation of the results of the Finite Element analyses suggested that the adherend yield was the main factor influencing failure load in the adhesive for joints of this type.  相似文献   

13.
In the peeling test of adhesive tapes as well as in other experiments for adhesive failure, the transition of failure modes from cohesive to interfacial has been observed by several workers in the process of increasing rate or decreasing temperature. It is accompanied by an abrupt change of adhesive strength. These facts cannot be explained by the failure mechanism based on a weak boundary layer. (It would be willful to assume two kinds of weak boundary layers). In this paper, the phenomena above referred to and the dependence of adhesive strength on rate, temperature, thickness, and some physical properties of adhesives are attempted to be explained rheologically. The author has proposed a simple model theory to interpret the so-called failure envelope of T. L. Smith, where viscoelastic substances were represented by Maxwell elements connected in parallel and appropriate criteria for failure were introduced to an element, which was considered a weak point in the substance (Zairyo (Materials) 17, 322 1968). In addition to this treatment for cohesive failure, the following new criterion is introduced to the same model; that is, interfacial failure occurs when the elastic work of deformation of the whole system reaches a critical value. The formulae obtained represent the observed behavior at least qualitatively. Other dependence of adhesive strength on the variables aforementioned and the mutual reduction between them are also discussed.  相似文献   

14.
Determination of the compressive strength of a composite depends on many experimental parameters. One of them is the adhesive used to bond the tabs to the compression specimen. Experimental results show that the compressive strength has no significant change when different adhesives with different moduli are used. The compressive strength was also shown to be independent of adhesive thickness in a composite compression specimen. A finite element analysis was utilized in this study to investigate the effect of tab adhesive properties, i.e., the modulus and thickness of the adhesive layer, on the compressive strength. The stress distributions along the adhesive layer and stress concentrations at the tab tip of a composite compression specimen are presented. The analytical prediction coincides with the limited experimental data.  相似文献   

15.
Nowadays, there is a strong trend towards the use of functionally graded materials, with particular importance for the functionally graded joints. The main objective of this work was to study a functionally modified adhesive in order to have mechanical properties that vary gradually along the overlap of a joint, allowing a uniform stress distribution along the overlap. This allows for a stronger and more efficient adhesive joint and would permit to work with much smaller areas, reducing considerably the weight of the structure which is a key factor in the transport industry. In the proposed joint, the adhesive stiffness varies along the overlap, being maximum in the middle and minimum at the ends of the overlap. The functionally graded joint was found to have a higher joint strength compared to the cases where the adhesive has homogeneous properties along the overlap. A simple analytical model to study the performance of the functionally graded joints was developed. The differential equation of this model was solved by a power series. Numerical modelling by finite element analysis was performed to validate the analytical model developed.  相似文献   

16.
复合材料具有比强度高、耐疲劳性能好、减震性能好、性能可设计等诸多优点,在航空航天、汽车等工业领域得到了广泛应用。本文通过改变复合材料管的铺层和胶接结构形式考察某航天复合材料管与接头连接构件的抗弯强度和疲劳性能。结果表明,采用双搭结构或单搭结构胶接段管的外侧局部加强都可以显著提高复合材料管与接头胶接构件的抗弯性能及疲劳性能,这两种方法都能够满足该航天构件的设计要求。  相似文献   

17.
The durability of adhesive joints is of special concern in structural applications and moisture has been identified as one of the major factors affecting joint durability. This is especially important in applications where joints are exposed to varying environmental conditions throughout their life. This paper presents a methodology to predict the stresses in adhesive joints under cyclic moisture conditioning. The single lap joints were manufactured from aluminium alloy 2024 T3 and the FM73®-BR127® adhesive-primer system. Experimental determination of the mechanical properties of the adhesive was carried out to measure the effect of moisture uptake on the strength of the adhesive. The experimental results revealed that the tensile strength of the adhesive decreased with increasing moisture content. The failure strength of the single lap joints also progressively degraded with time when conditioned at 50°C, immersed in water; however, most of the joint strength recovered after drying the joints. A novel finite element based methodology, which incorporated moisture history effects, was adopted to determine the stresses in the single lap joints after curing, conditioning, and tensile testing. A significant amount of thermal residual stress was present in the adhesive layer after curing the joints; however, hygroscopic expansion after the absorption of moisture provided some relief from the curing stresses. The finite element model used moisture history dependent mechanical properties to predict the stresses after application of tensile load on the joints. The maximum stresses were observed in the fillet areas in both the conditioned and the dried joints. Study of the stresses revealed that degradation in the strength of the adhesive was the major contributor in the strength loss of the adhesive joints and adhesive strength recovery also resulted in recovered joint strength. The presented methodology is generic in nature and may be used for various joint configurations as well as for other polymers and polymer matrix composites.  相似文献   

18.
An axisymmetric adhesion apparatus was used to characterize the adhesive and viscoelastic properties of acrylic block copolymer layers that behave as model pressure sensitive adhesives. The mechanisms of deformation were summarized and related to the structure and linear viscoelastic response of each model adhesive. In cases where the area between the adhesive layer and adhering surface remained circular and shrunk uniformly during detachment, the adhesive failure criterion can be quantified and compared to predictions from linear elastic fracture mechanics. The nature of adhesive failure can not be reconciled with these traditional, low-strain approaches, but is consistent with models of large strain elasticity, provided that the finite thickness of the adhesive layer is taken into account. A dimensionless ratio involving the adhesive strength, elastic modulus and adhesive layer thickness can be used to define the regime in which the adhesive failure criterion can be quantified with linear elastic fracture mechanics.  相似文献   

19.
An axisymmetric adhesion apparatus was used to characterize the adhesive and viscoelastic properties of acrylic block copolymer layers that behave as model pressure sensitive adhesives. The mechanisms of deformation were summarized and related to the structure and linear viscoelastic response of each model adhesive. In cases where the area between the adhesive layer and adhering surface remained circular and shrunk uniformly during detachment, the adhesive failure criterion can be quantified and compared to predictions from linear elastic fracture mechanics. The nature of adhesive failure can not be reconciled with these traditional, low-strain approaches, but is consistent with models of large strain elasticity, provided that the finite thickness of the adhesive layer is taken into account. A dimensionless ratio involving the adhesive strength, elastic modulus and adhesive layer thickness can be used to define the regime in which the adhesive failure criterion can be quantified with linear elastic fracture mechanics.  相似文献   

20.
With the emergence of commercial grafted caged silica (Polyhedral Oligomeric Silesquioxanes, POSS) having a three-dimensional (3D) morphology with peripheral functionality, new opportunities have been created for formulating dental adhesives and composites with enhanced mechanical and physical properties. The objective of the present study was to investigate the properties obtained by incorporating grafted caged silica into acrylate based dental composite and adhesive systems. Two commercial POSS materials (methacrylated and octaphenyl grafted) were added to dental restorative-glass-filled pre-polymers, based on BisGMA (bis-phenol A-glycidyldimethacrylate), HEMA (2-hydroxyethylmethacrylate) and TEGDMA (tetraethylglycidylmethacrylate). The nanostructured organic/inorganic hybrid compounds exhibited enhanced mechanical and thermal properties in cases where the POSS added was in concentrations up to 2 wt%. Beyond this threshold concentration, properties decreased due to agglomeration. In the case of the acrylated POSS, the T g increased by 5°C, the composite compressive strength by 7%, and the bond shear strength by 36% and the shrinkage was reduced by 28% compared with neat dental composites and adhesives. Furthermore, in the case of octaphenyl grafted POSS, the compressive strength was reduced by 20%, the adhesive shear bond strength decreased by 49% and the shrinkage was reduced by 67%. It was concluded that the type of the grafted functional group of the caged silica was the dominant factor in nano-tailoring of improved dental composites and adhesives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号