共查询到20条相似文献,搜索用时 125 毫秒
1.
传统的兴趣点推荐通常忽略了用户签到行为中序列模式的重要性,且无法有效地捕捉用户复杂且动态变化的兴趣偏好.由此,本文提出了一种用户偏好和时间序列的兴趣点推荐模型(User Preference&Time Sequence based POI Recommenda-tion,UPTS-PRec).该模型能够分别对短期偏好和... 相似文献
2.
目前大多数推荐技术是针对用户单方面兴趣进行的。提出了一种用户多面(multi-faced)兴趣信任度的推荐算法,以适应博客、维客、新闻文章等涉及用户多种兴趣下的推荐。新算法以一种协调的方式将传统的协同过滤算法和基于信任度的推荐算法相结合。实验结果表明,该算法不仅能适应用户多种兴趣下的推荐,而且能有效解决冷启动问题,大大提高了推荐效果。 相似文献
3.
赵容梅;孙思雨;鄢凡力;彭舰;琚生根 《计算机研究与发展》2024,61(7):1730-1740
序列推荐的近几年工作通过聚类历史交互物品或者利用图卷积神经网络获取交互的多层次关联信息来细化用户兴趣. 然而,这些方法没有考虑具有相似行为模式的用户之间的相互影响以及交互序列中时间间隔不均匀对用户兴趣的影响. 基于上述问题,提出一种基于对比学习的多兴趣感知序列推荐模型MIRec,一方面考虑了序列内部的物品依赖和位置依赖等局部偏好信息,另一方面通过图信息聚合机制获取相似用户之间的全局偏好信息;然后将融合局部偏好和全局偏好的用户表示输入胶囊网络中,学习用户交互序列中的多兴趣表示;最后通过对比学习使用户的历史交互序列靠近增强的交互序列,获得对时间间隔不敏感的用户多兴趣表示,为用户提供更准确的推荐. 所提模型在2个真实数据集上进行了充分实验,实验结果验证了所提模型的有效性. 相似文献
4.
5.
6.
7.
郭静菡 《自动化技术与应用》2023,(10):108-112
针对当前个性化音乐智能推荐系统的用户满意度低问题,为此设计面向用户偏好的个性化音乐智能推荐系统。首先采集用户兴趣数据,采用知识本体构建用户个性化音乐兴趣模型,然后采用概率矩阵分解设计个性化音乐推荐算法,最后仿真实验测试系统性能。测试结果表明,系统推荐准确度较高,兴趣吻合度最高可达98.632%,情景吻合度最高可达99.250%,提升了下载与收藏平均精度,实时更新和推荐时延短,实时更新时延低于2 000 ms;实时推荐时延低于600 ms,系统的推荐性能与运行性能都很好。 相似文献
8.
在现实生活中,用户对兴趣点的偏好会受到时空场景的影响,用户希望获得匹配当前时间的推荐结果。由此,提出基于用户长短期偏好及时空场景的下一个兴趣点推荐模型。该模型围绕实时兴趣点推荐这一问题,从用户的长短期偏好两方面来挖掘用户的实时兴趣偏好。对于长期偏好,从历史数据中收集与当前时空场景最相关的信息。对于短期偏好,在序列影响的基础上考虑时间推移影响。在公开数据集上的实验结果证明了方法的有效性。 相似文献
9.
10.
协同过滤推荐作为主流的个性化推荐方法在实际应用中存在一定缺陷, 在一些情况下得到的推荐结果不够准确。考虑到信任与用户偏好相似性的关系, 将信任引入到推荐模型中, 并同时考虑暗示用户偏好的多维因素, 提出基于信任偏好的个性化推荐方法, 以提高推荐系统的准确性, 并用实验验证了此方法的有效性。 相似文献
11.
12.
本文从娱乐门户网站的访问日志中挖掘出用户喜好的访问模式,分析得出用户偏爱度反相关于日志中时间距离,正相关于使用频度,并推导出用户偏爱度函数,从而以用户偏爱度来指导系统自动调整用户的显示界面和内容,并以管理子系统为例介绍实现智能的个性化推荐系统。 相似文献
13.
个性化推荐系统能很好地解决互联网中信息过载的问题,传统推荐系统存在着商家较为分散、隐私容易泄漏的问题。提出了一种基于中间代理的电子商务智能推荐系统,利用内容过滤技术进行推荐,在考虑用户隐私的基础上使用向量空间模型挖掘用户的兴趣偏好和商品的特征评价,引入时间遗忘函数以处理兴趣变化问题,根据收集的信息产生推荐序列,针对重点难点问题提出了解决方案。采用Movielens数据集进行的实验结果表明,该方法能提供较好的推荐准确度与计算性能。 相似文献
14.
本文对数据挖掘课程的特点以及应用领域、数据预处理方法以及关键的四项技术、Web挖掘与个性化推荐以及算法实现及应用上做了分析,并且在教学实践中做了尝试,提出了一些经验和不足。 相似文献
15.
16.
提出基于关联的聚类分析方法,挖掘具有相似访问兴趣的用户访问模式,分离不相关的用户模式,并提出基于关联的聚类算法。实验证明,该算法大量减少不相关的用户访问模式,提高个性化推荐质量。为进一步研究个性化推荐技术奠定基础。 相似文献
17.
18.
19.
YANG Jie 《数字社区&智能家居》2008,(24)
对现有的Apriori算法进行改进,用分治策略引入哈希技术的方法完成了压缩侯选集,减少频繁扫描数据库的次数,克服了原有关联规则的数据挖掘算法生成频繁集比较大,且需要反复扫描数据库的问题。 相似文献