首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The free convective flow of an incompressible viscous fluid over an isothermal vertical cone with variable viscosity and variable thermal conductivity is examined in the presence of the Soret and Dufour effects. As thermal and solutal boundary conditions at the cone's surface, the constant temperature and concentration (WTC) and constant heat and mass flux (HMF) cases are taken into account. The successive linearization method is applied to linearize a system of nonlinear differential equations that describes the flow under investigation. The numerical solution for the resulting linear equations is attained by means of the Chebyshev spectral method. The obtained numerical results are compared and found to be in good agreement with previously published results. The impact of significant parameters on the heat and mass transfer rates is evaluated and presented graphically for the WTC and HMF situations. In both cases, the Soret number increases the skin friction coefficient and rate of heat transfer while decreasing the Sherwood number. With an increase in the Dufour parameter, the coefficient of skin friction and Sherwood numbers increase while the heat transmission rate decreases.  相似文献   

2.
This study addresses the thermo‐diffusion and the diffusion‐thermo phenomena in a semi‐infinite absorbent channel whose walls are contracting/expanding, with heat source/sink effects. The governing partial differential equations with suitable boundary conditions are transformed to a system of dimensionless ordinary differential equations. An analytic solution of the problem has been found using a technique called homotopy analysis method (HAM). HAM gives consistently valid answers to the problem over an extensive variety of parameters and also provides better accuracy. To validate the analytical results, a comparison has been presented with a numerical solution calculated by using the parallel shooting method. The effects of dimensionless parameters, that is, deformation parameter, Reynolds number, Soret and Dufour numbers, and heat source/sink parameter on the expressions of velocity, temperature, and concentration profiles are analyzed graphically to understand the physics of the deformable channel. It has been noted that the velocity across the channel is higher for the expanding channel, as compared to that for the contracting channel. Also the Soret and Dufour number increases the temperature of the fluid, and decreases the concentration. The temperature profile has an increasing behavior in the case of heat source, and a decreasing behavior in the case of heat sink.  相似文献   

3.
The purpose of this study is to examine the magnetohydrodynamic mixed convection Casson fluid flow over an inclined flat plate along with the heat source/sink. The present flow problem is considered under the assumption of the chemical reaction and thermal radiation impacts along with heat and mass transport. The leading nonlinear partial differential equations of the flow problem were renovated into the nonlinear ordinary differential equations (ODEs) with the assistance of appropriate similarity transformations and then we solved these ODEs with the employment of the bvp4c technique using the computational software MATLAB. The consequences of numerous leading parameters such as thermophoretic parameter, local temperature Grashof number, solutal Grashof number, suction parameter, magnetic field parameter, Prandtl number, chemical reaction parameter, Dufour number, Soret number, angle of inclination, radiation parameter, heat source/sink, and Casson parameter on the fluid velocity, temperature, and concentration profiles are discoursed upon  and presented through different graphs. Some important key findings of the present investigation are that the temperature of the Casson fluid becomes lower for local temperature Grashof number and solutal Grashof number. It is initiated that the Casson fluid parameter increases the velocity of the fluid whereas the opposite effect is noticed in the temperature profile. Higher estimation of Prandtl number and magnetic parameter elevated the Casson fluid concentration. Finally, the skin friction coefficient, Nusselt number, and Sherwood number are calculated and tabulated. It is also examined that the Nusselt number is weakened for both the Dufour number and Soret number but the skin fraction coefficient is greater for both the Dufour number and Soret number.  相似文献   

4.
This paper investigates the heat and mass transfer of an unsteady, magnetohydrodynamic incompressible water-based nanofluid (Cu and TiO2) flow over a stretching sheet in a transverse magnetic field with thermal radiation Soret effects in the presence of heat source and chemical reaction. The governing differential equations are transformed into a set of nonlinear ordinary differential equations and solved using a regular perturbation technique with appropriate boundary conditions for various physical parameters. The effects of different physical parameters on the dimensionless velocity, temperature, and concentration profiles are depicted graphically and analyzed in detail. Finally, numerical values of the physical quantities, such as the local skin-friction coefficient, the Nusselt number, and the Sherwood number, are presented in tabular form. It is concluded that the resultant velocity reduces with increasing Jeffrey parameter and magnetic field parameter. Results describe that the velocity and temperature diminish with enhancing the thermal radiation. Both velocity and concentration are enhanced with increases of the Soret parameter. Also, it is noticed that the solutal boundary layer thickness decreases with an increase in chemical reaction parameters. This is because chemical molecular diffusivity reduces for higher values of chemical reaction parameter. Also, water-based TiO2 nanofluids possess higher velocity than water-based Cu nanofluids. Comparisons with previously published work performed and the results are found to be in excellent agreement. This fluid flow model has several industrial applications in the field of chemical, polymer, medical science, and so forth.  相似文献   

5.
A two-dimensional mathematical model is presented for the laminar heat and mass transfer of an electrically-conducting, heat generating/absorbing fluid past a perforated horizontal surface in the presence of viscous and Joule (Ohmic) heating. The Talbot–Cheng–Scheffer–Willis formulation (1980) is used to introduce a thermophoretic coefficient into the concentration boundary layer equation. The governing partial differential equations are non-dimensionalized and transformed into a system of nonlinear ordinary differential similarity equations, in a single independent variable, η. The resulting coupled, nonlinear equations are solved under appropriate transformed boundary conditions using the Network Simulation Method. Computations are performed for a wide range of the governing flow parameters, viz Prandtl number, thermophoretic coefficient (a function of Knudsen number), Eckert number (viscous heating effect), thermal conductivity parameter, heat absorption/generation parameter, wall transpiration parameter, Hartmann number and Schmidt number. The numerical details are discussed with relevant applications. Excellent correlation is achieved with earlier studies due to White (1974) and Chamkha and Issa (2000). The present problem finds applications in optical fiber fabrication, aerosol filter precipitators, particle deposition on hydronautical blades, semiconductor wafer design, thermo-electronics and nuclear hazards.  相似文献   

6.
The present research may facilitate the reduction of the number of conversion steps required to include the low output voltages in an electrokinetic biomass process. Variable thermal conductivity and electroosmosis flow have already established great potential in the thermo-elastic models of various manufacturing industries and have been widely used in energy technologies. As a result, the current framework investigates the characteristics of natural convection flow with the influence of variable thermal conductivity and electroosmosis over an eternity vertical porous plate. Coriolis forces and Hall current effects are considered in the momentum equations, and also thermal radiation and variable thermal conductivity are taken as energy equations. A linear chemical reaction parameter is used in the concentration equation. The equation of Poisson–Boltzmann is exploited to depict the electric potential characteristics within the accelerated plate medium. The pdepe command in Matlab software is used to figure out the numerical solutions to equations about momentum, energy, and concentration. The expressions of fluid transverse velocity, fluid axial velocity, fluid temperature, and concentration profiles are presented as numerical results and also derived vital relevant stream parameters diagrammatically, whereas the numerical values of primary skin friction, secondary skin friction, and Nusselt number are presented in tabular form for various values of pertinent flow parameters. The temperature rises as the strength of the thermal conductivity variable parameter increases. Also, as the values of the Taylor number and the thermal conductivity variable parameter go up, the primary velocity goes down. Similarly, secondary velocity increases in the opposite direction as the Taylor number and thermal conductivity variable parameter increase.  相似文献   

7.
In this paper, the effects of thermophoresis particle deposition on an unsteady two dimensional forced convective heat and mass transfer flow past a wedge taking into account the variation of fluid viscosity and fluid Prandtl number with temperature are studied. The local similarity equations are derived and solved numerically using Nachtsheim–Swigert shooting iteration technique along with the sixth order Runge–Kutta integration scheme. Comparisons with previously published work are performed, and the results are found to be in excellent agreement. Results for the non-dimensional velocity, temperature, concentration, Prandtl number and thermophoretic velocity are displayed graphically whereas thermophoretic deposition velocity is shown in the tabulated form for various values of the pertinent parameters. The obtained numerical results show that in modeling the thermal boundary-layer flow with a temperature-dependent viscosity, consideration of the Prandtl number as a constant within the boundary layer produces unrealistic results, and therefore, it must be treated as a variable rather than a constant within the boundary layer. The results also show that the thermophoretic particle deposition velocity decreases as the thermophoretic coefficient increases.  相似文献   

8.
The analysis of magnetized micro–nanoliquid flows generated by the movable disk is executed in this study. The disk is contained under the porous zone influence. The heat generation, heat sink, and temperature-dependent conductance analysis are reported through the energy equation. The activation energy in terms of a chemical reaction is incorporated through the mass equation. The flow model is normalized through the implementation of similarity transformations. The numerical algorithm Runge–Kutta–Fehlberg is used to solve the reduced system. Results are plotted graphically and in tabular format to investigate the velocity, thermal, and concentration fields. Numeric benchmarks of couple and shear stresses, thermal and concentration rates are also computed. The temperature is augmented against the incremented thermophoretic, variable conductivity, and Brownian movement parameters. The presence of variable conductivity parameter resulted in a weaker rate of heat transportation. The heat transportation rate is boosted with an incremented Prandtl number.  相似文献   

9.
An analysis has been carried out to investigate the effect of homogeneous‐heterogeneous reactions and induced magnetic field on the unsteady two‐dimensional incompressible nonlinear thermal convective velocity slip flow of a Jeffrey fluid in the presence of nonlinear thermal radiation and heat source/sink. We assumed that the flow is generated due to injection at the lower plate and suction at the upper plate. We obtained a numerical solution for the reduced nonlinear governing system of equations via the shooting technique with fourth‐order Runge‐Kutta integration. We plotted the graphs for various nondimensional parameters, like Deborah number, heat source/sink parameter, nonlinear convection parameter, nonlinear radiation parameter, magnetic Reynolds number, Strommer's number, velocity slip parameter, strengths of homogeneous, heterogeneous reaction parameters and skin friction over the nondimensional flow, temperature, concentration profiles and magnetic diffusivity fields. Also, we calculated the numerical values of boundary properties, such as the skin friction and heat transfer rate. We noticed that the temperature of the fluid is enhanced with the radiation parameter, whereas the concentration decreases with increase of the magnetic Reynolds number. The present results have good agreement with published work for the Newtonian case.  相似文献   

10.
An efficient numerical method, namely, the Runge‐Kutta fourth order integration scheme with shooting technique is employed to give a suitable solution for the unsteady magnetohydrodynamic boundary layer flow of viscous incompressible fluid with accretion or ablation effects over a flat plate under the influence of homogenous first order chemical reaction. When compared to the other numerical techniques such as perturbation methods, this approach provides the accurate numerical results valid uniformly for all nondimensional time. The unsteady behavior of chemically reacting magnetohydrodynamic boundary layer flow is investigated by analyzing the nature of buoyancy and magnetic parameters in the momentum equation. Also, results are extended to the energy and concentration equations by considering the viscous dissipation, Joule heating and chemical reaction effects. With the help of suitable similarity transformations, the highly nonlinear, coupled, time‐dependent partial differential equations are reduced to ordinary differential equations. Furthermore, the numerical solutions in terms of velocity, temperature and concentration profiles within the boundary layer are presented for the various values of control parameters. Also, the impact of physical parameters on the flow, heat and mass transfer characteristics are examined thoroughly. The present investigation reports that, the increasing magnetic parameter increases the temperature field and decreases the velocity field. Also, Eckert number enhance the thermal field whereas, the chemical reaction parameter decays the concentration field. Before concluding the considered problem, present results are validated with the previous results and are found to be in good agreement.  相似文献   

11.
A study of Soret–Dufour effects along with chemical reaction, viscous dissipation combining on MHD Joule heating for viscous incompressible flow is presented. It is assumed that fluid is flowing past an angled stretching sheet saturated in porous means. The slip conditions of velocity, concentration, and temperature are accounted for at the boundary. The mathematical expression of the problem contains highly nonlinear interconnected partial differential equations. To convert governing equations into ordinary differential equations, appropriate similarity transformations were utilized. These differential equations with boundary constraints are resolved by homotopy analysis method. Expression for velocity, concentration, and temperature are derived in the form of series. Effects of numerous physical parameters, for example, Schmidt number, Soret number, buoyancy ratio parameter, slip parameter, and so forth, on various flow characteristics are presented through graphs. Numerous values of velocity, concentration, and temperature gradient are tabulated against different parameters. Results show that the fluid velocity increases by enhancing the Soret number, Dufour number, or permeability parameter. The fluid's concentration rises as the Soret number increases, while it falls as the Dufour number, chemical reaction parameter, or permeability parameter increases.  相似文献   

12.
Thermophysical and wall‐slip effects arise in many areas of nuclear technology. Motivated by such applications, in this article, the collective influence of variable‐viscosity, thermal conductivity, velocity and thermal slip effects on a steady two‐dimensional magnetohydrodynamic micropolar fluid over a stretching sheet is analyzed numerically. The governing nonlinear partial differential equations have been converted into a system of nonlinear ordinary differential equations using suitable coordinate transformations. The numerical solutions of the problem are expressed in the form of nondimensional velocity and temperature profiles and discussed from their graphical representations. The Nachtsheim‐Swigert shooting iteration technique together with the sixth‐order Runge‐Kutta integration scheme has been applied for the numerical solution. A comparison with the existing results has been done, and an excellent agreement is found. Further validation with the Adomian decomposition method is included for the general model. Interesting features in the heat and momentum characteristics are explored. It is found that a greater thermal slip and thermal conductivity elevate thermal boundary layer thickness. Increasing Prandtl number enhances the Nusselt number at the wall but reduces wall couple stress (microrotation gradient). Temperatures are enhanced with both the magnetic field and viscosity parameter. Increasing momentum (hydrodynamic) slip is found to accelerate the flow and elevate temperatures.  相似文献   

13.
The present paper investigates heat and mass transfer over a moving porous plate with hydrodynamic slip and thermal convective boundary conditions and concentration dependent diffusivity. The similarity representation of the system of partial differential equations of the problem is obtained through Lie group analysis. The resulting equations are solved numerically by Maple with Runge–Kutta–Fehlberg fourth–fifth order method. A representative set of results for the physical problem is displayed to illustrate the influence of parameters (velocity slip parameter, convective heat transfer parameter, concentration diffusivity parameter, Prandtl number and Schmidt number) on the dimensionless axial velocity, temperature and concentration field as well as the wall shear stress, the rate of heat transfer and the rate of mass transfer. The analytical solutions for velocity and temperature are obtained. Very good agreements are found between the analytical and numerical results of the present paper with published results.  相似文献   

14.
This article addresses an investigation of the entropy analysis of Williamson nanofluid flow in the presence of gyrotactic microorganisms by considering variable viscosity and thermal conductivity over a convectively heated bidirectionally stretchable surface. Heat and mass transfer phenomena have been incorporated by taking into account the thermal radiation, heat source or sink, viscous dissipation, Brownian motion, and thermophoretic effects. The representing equations are nonlinear coupled partial differential equations and these equations are shaped into a set of ordinary differential equations via a suitable similarity transformation. The arising set of ordinary differential equations was then worked out by adopting a well-known scheme, namely the shooting method along with the Runge-Kutta-Felberge integration technique. The effects of flow and heat transfer controlling parameters on the solution variables are depicted and analyzed through the graphical presentation. The survey finds that magnifying viscosity parameter, Weissenberg number representing the non-Newtonian Williamson parameter cause to retard the velocity field in both the directions and thermal conductivity parameter causes to reduce fluid temperature. The study also recognizes that enhancing magnetic parameters and thermal conductivity parameters slow down the heat transfer rate. The entropy production of the system is estimated through the Bejan number. It is noticeable that the Bejan number is eminently dependent on the heat generation parameter, thermal radiation parameter, viscosity parameter, thermal conductivity parameter, and Biot number. The skillful accomplishment of the present heat and mass transfer system is achieved through the exteriorized choice of the pertinent parameters.  相似文献   

15.
The aim of the present paper is to investigate the Soret effect due to mixed convection on unsteady magnetohydrodynamics flow past a semi-infinite vertical permeable moving plate in the presence of thermal radiation, heat absorption, and homogenous chemical reaction subjected to variable suction. The plate is assumed to be embedded in a uniform porous medium and moves with a constant velocity in the flow direction in the presence of a transverse magnetic field. The equations governing the flow are transformed into a system of nonlinear ordinary differential equations by using the perturbation technique. Graphical results for the velocity distribution, temperature distribution, and concentration distribution based on the numerical solutions are presented and discussed. Also, the effects of various parameters on the skin-friction coefficient and the rate of heat transfer in the form of Nusselt number, and rate of mass transfer in the form of Sherwood number at the surface are discussed. Velocity distribution is observed to increase with an increase in Soret number and in the presence of permeability, whereas it shows reverse effects in the case of the aligned magnetic field, inclined parameter, heat absorption coefficient, magnetic parameter, radiation parameter, and chemical reaction parameter.  相似文献   

16.
The quintessence of this article encompasses the effect of diffusiophoresis, chemical reaction, and varying viscosity as well as thermal conductivity on a fully developed dissipative flow through an upright channel. The fluid is electrically conducting undergoing mixed convection. The governing equations, after transfiguring into dimensionless formation, are solved through a numerical procedure for boundary value problems incorporating MATLAB solver. Imperative scrutiny is made to visualize associative impacts of flow parameters, namely, magnetic parameter, the Brinkmann number, the Schmidt number, variable viscosity parameter, variable thermal conductivity parameter, chemical reaction parameter, diffusiophoretic parameter, and particle diffusion parameter, on the flow. The velocity field, the temperature field, the solute concentration field, the particle concentration field, the skin friction, the Nusselt number, the Sherwood number, and the particle concentration gradient are assessed in view of alteration of the aforesaid parameters with the help of visual illustrations in graphical form and tabular form. Solute mass transposition and colloidal particle locomotion are the fresh inclusions to the scrutiny of upright channel flow in light of solving scheme of bvp4c. Chemical reaction engulfs both solute and particle concentration. Growing viscosity hinders the fluid velocity and heats up the flow encouraging interlayer friction.  相似文献   

17.
A two-dimensional numerical model has been framed to investigate the effect of buoyancy forces on magnetized free convective Walters-B fluid flow over a stretching sheet with Soret effect, heat radiation, thermal source/sink, and viscous dissipation. The current physical model is developed based on the stretching sheet geometry. The impact of Lorentz force on the nonlinear system is investigated and considered in the velocity equation. The influence of thermal radiation, heat source/sink, viscous dissipation, and Joule heating is considered in the energy equation. The effect of Soret parameter and chemical reaction on mass transfer is accounted in the concentration equation. The current physical model is governed by the highly coupled nonlinear system of partial differential equations. Owing to the inadequacy in the analytical techniques, the obtained governing equations are solved by using the bvp4c Matlab function via similarity transformations approach. Numerical computations are performed for the varying values of physical parameters, which are expressed in terms of tables and graphs. Magnifying viscoelastic parameter decays the velocity profile and enhances the thermal and concentration fields. Enhancing free convection parameters diminishe the velocity fields and magnifies the thermal profile. Thermal field magnifies with enhancing thermal radiation parameter and Eckert number. Enhancing the Soret number raises the concentration field. Also, the bvp4c Matlab function adequately simplifies the highly nonlinear coupled system of equations occurring in nature. The present similarity solutions presented in this paper coincides with previously published results in the literature.  相似文献   

18.
The objective of the present study is to investigate the effects of the variable magnetic field, chemical reaction, thermal radiation, Soret effect, and variable heat absorption on the fluid flow and heat and mass transfer of an unsteady Casson fluid past a stretching surface in a saturated porous medium. Velocity slip near the plate and conjugate heating boundary conditions in heat and mass transfer have been considered in this study. Due to the complexities in boundary conditions, the analytic solution of the governing equations of the present model is not possible. Thus, to overcome these issues, the coupled partial differential equations of the model are converted into a set of ordinary differential equations using similarity transformation. These equations have then been solved numerically using the fourth-order Runge-Kutta technique via the shooting method. The effects of various pertinent flow parameters on the velocity, concentration, and temperature field have been studied graphically. For the field of engineering, to get an insight into the physical quantities, especially Nusselt number, Sherwood number, and skin friction, their numerical values have been estimated against various parameters and presented in tables. From the tabulated values, it has been perceived that the shear stress increases with an increase in magnetic parameter, unsteadiness parameter, Casson parameter, and heat source parameter, whereas the Biot number shows the reverse trend. The mixture of porous media has justified that the heat transport process over a stretching sheet results in averting heat loss and accelerating the process of cooling, which is a significant outcome of the study. Furthermore, it has also been revealed that with the increase in the Soret effect and magnetic field, there is a reduction in the fluid velocity and temperature near the plate, whereas there is an increase in the species concentration. It has also been mentioned that the effects of the variable magnetic field have been widely applied in various engineering applications like magnetohydrodynamic (MHD) propulsion forces, rate of cooling, MHD power generation, and so on.  相似文献   

19.
The effect of suction/injection on thermophoretic particle deposition in free convection on a vertical plate embedded in a fluid saturated non-Darcy porous medium is studied using similarity solution technique. The effect of Soret and Dufour parameters on convective transport, wall thermophoretic deposition velocity, heat transfer and mass transfer is discussed in detail for different values of dispersion parameters, (Raγ, Raξ) inertial parameter F and Lewis number Le. The result indicates that in both suction, injection the Soret effect is more influential in increasing the concentration distribution in both aiding as well as opposing buoyancies. Also, it is worth mentioning here that the combined effect of opposing buoyancy and injection will have a more significant effect on the boundary layer thickness. In both the cases, suction as well as injection, magnitude of heat transfer is observed to be more when the second order effects are considered than when they are not. But, mass transfer and the wall thermophoretic deposition velocity Vtw becomes less when all effects are considered than when they are not.  相似文献   

20.
A numerical review on magnetohydrodynamics radiative motion of Cross nanofluid across an exponentially stretchable surface near stagnation point with varying heat source/sink is addressed. Brownian movement and thermophoretic impacts are assumed. The governing equations for this study are first altered as a system of ordinary differential equations by similarity transformation. With an aid of the Runge–Kutta 4th order mechanism together with the shooting procedure, the impacts of several pertinent parameters including chemical reaction on regular profiles (velocity, temperature, and concentration) are explicated. The consequences of the same parameters on surface drag force, transfer rates of heat, and mass are visualized in tables. From the analysis, it was noticed that the magnetic field parameter enhances the temperature and decreases the velocity of the Cross nanofluid. Also, fluid temperature is an increasing function with thermal radiation and nonuniform heat source/sink. The rate of heat transfer is increased with thermophoresis and diminished with Brownian motion. Sherwood's number is diminished with Brownian motion but it was boosted up with thermophoresis. The present results are compared with published results and those are in agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号