首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The absorption/desorption properties of two commercial, toughened epoxy adhesive systems were evaluated gravimetrically, and by X-ray photoelectron spectroscopy (XPS) and dynamic mechanical thermal analysis (DMTA). Fracture tests on degraded open-faced DCB specimens showed that these two adhesive systems have very different degradation behaviors. The steady-state critical strain energy release rate, Gcs, of an adhesive system 1 decreased rapidly with an exposure time in various hot-wet environments, reaching a relatively low value that was stable for over one year, while that of adhesive system 2 remained unchanged for more than one and a half years. A degradation mechanism which accounts for the different characteristics of the two adhesive systems was proposed. A model of fracture toughness degradation, analogous to Fick’s law, was then used to characterize the fracture toughness loss in an adhesive system 1, and the effects of temperature, RH and water concentration were evaluated. The results illustrate the wide variation in water absorption behaviors that can exist among toughened epoxy adhesives, and show how these differences relate to the degradation of fracture strength. The data were also used to assess the applicability of an exposure index (EI), defined as the integral of relative humidity over time, as a means of characterizing an aging history. The fracture strength degradation was measured after aging to achieve a range of EI values, and it was found that the strength loss was independent of the time-humidity path for sufficiently large EI.  相似文献   

2.
In this work, the double cantilever beam (DCB) test is analysed in order to evaluate the combined effect of temperature and moisture on the mode I fracture toughness of adhesives used in the automotive industry. Very few studies focus on the combined effect of temperature and moisture on the mechanical behaviour of adhesive joints. To the authors’ knowledge, the simultaneous effect of these conditions on the fracture toughness of adhesive joints has never been determined. Specimens using two different adhesives for the automotive industry were subjected to two different ageing environments (immersion in distilled water and under 75% of relative humidity). Once they were fully degraded, they were tested at three different temperatures (?40, 23 and 80 °C), which covers the range of temperature an adhesive for the automotive industry is required to withstand. The aim is to improve the long term mechanical behaviour prediction of adhesive joints. The DCB substrates were made of a high strength aluminium alloy to avoid plastic deformation during test. The substrates received a phosphoric acid anodisation to improve their long term adhesion to the adhesive. Results show that even though a phosphoric acid anodization was applied to the adherends, when the aged specimens were tested at room temperature and at 80 °C, they suffered interfacial rupture. At ?40 °C, however, cohesive rupture was observed and the fracture toughness of the aged specimens was higher.  相似文献   

3.
The crack path and fracture surface in the mixed-mode fracture of two different rubber-toughened epoxy adhesives were evaluated using double-layered open-faced double cantilever beam (ODCB) specimens in which the primary adhesive layer had been environmentally aged. The crack path in the mixed-mode fracture of unaged ODCB specimens was unexpectedly in the secondary adhesive layer, and several hypotheses were examined to explain this. It was concluded that a reduced residual stress in the secondary adhesive layer produced stable crack growth in the secondary layer instead of the expected path in the primary layer. The average crack path depth, fracture surface roughness and maximum elevation in the fracture surface profiles were then measured using optical profilometry as a function of the degree of aging. The results showed a strong relationship between all these parameters and the critical strain energy release rate, Gcs, irrespective of the type of adhesive. In the case of adhesive A where significant irreversible degradation was observed, all these parameters varied approximately linearly with Gcs. In the case of adhesive B, aging did not result in permanent degradation (Gcs was unchanged) and so all these fracture surface parameters also remained unchanged after aging. The results indicate that quantifying fracture surface parameters as a post-failure analysis can be of use in the estimation of the fracture toughness at which a practical joint fails.  相似文献   

4.
Abstract

The contribution of graphene nanoplatelets (GNPs) for enhancing the fracture toughness of a commonly used room-cured epoxy, used to bond E-glass/epoxy composite adherends, is evaluated. A comprehensive experimental investigation is conducted to examine the performance and degradation of adhesively bonded joints subject to cyclic thermal loading using the standard double cantilever beam (DCB) specimens. Several groups of DCB specimens were fabricated using the adhesive reinforced with four different GNPs weight-percentages (i.e. 0.0, 0.25, 0.5 and 1%). The specimens are subsequently subjected to various numbers of thermal cycles (to a maximum of 1000 heating/cooling cycles), and then tested, and the resulting mode I fracture toughness values are evaluated and compared. The extent and modes of damage captured through microscopy and scanning electron microscopy images are presented and discussed. In addition, a computational framework, using the cohesive zone modeling technique, is developed for predicting the response of the adhesives and their damage evolution.  相似文献   

5.
This paper proposes a new methodology for the finite element (FE) modelling of failure in adhesively bonded joint. Unlike current methods, cohesive and adhesive failures are treated separately. Initial results show the method׳s ability to give accurate prediction of failure of adhesive joints subjected to thickness-induced constraint and complex multi-axial loading using a single set of material parameters. The present paper (part I), focuses on the development of a smeared-crack model for cohesive failure. Model verification and validation are performed comparing the model predictions with experimental data from 3 point bending End Notched Flexure (3ENF) and Double Cantilever Beam (DCB) fracture tests conducted on adhesively bonded composite panels of different adhesive thicknesses.  相似文献   

6.
One of the challenges in the application of structural adhesive joints is the prediction of their long-term durability. During the service life, moisture diffuses into the adhesive layer and eventually degrades its fracture properties. Environmental degradation should thus be taken into consideration in the design and analysis of adhesive joints. This work first provides an overview, summarizing the recent efforts regarding the hygrothermal exposure of adhesive joints, accelerated aging methods, water diffusion modeling, and characterization of fracture properties in adhesively bonded joints. The second part presents a recent degradation methodology by which the fracture toughness evolution of adhesive joints can be predicted using fracture test data obtained using the accelerated open-faced degradation method.  相似文献   

7.
ABSTRACT

Adhesive bonding is a widely used joining method because of specific advantages compared to the traditional fastening methods. Cohesive zone modelling (CZM) is currently the most widely used technique for strength prediction. CZM supposes the characterization of the CZM laws in tension and shear. This work evaluated the tensile fracture toughness (GIC) and CZM laws of bonded joints with three adhesives by the double-cantilever beam (DCB) test. The experimental work consisted of the adhesives’ tensile fracture characterization by the J-integral technique. As the main novelty of this work, the precise shape of the cohesive law of adhesives ranging from brittle to highly ductile was defined by the direct method, using a digital image correlation method to evaluate the tensile relative displacement (δn) of the adhesive layer at the crack tip and adherends’ rotation at the crack tip (?o). Moreover, finite element (FE) simulations permitted assessing the accuracy of triangular, trapezoidal and linear-exponential CZM laws in predicting the experimental behaviour of the DCB bonded joints with markedly distinct behaviours. As output of this work, fracture data and information regarding the applicability of these CZM laws to each type of adhesive is provided, allowing the subsequent strength prediction of bonded joints.  相似文献   

8.
This paper investigates the role of material properties on crack path selection in adhesively bonded joints. First, a parametric study of directionally unstable crack propagation in adhesively-bonded double cantilever beam specimens (DCB) is presented. The results indicate that the characteristic length of directionally unstable cracks varies with the Dundurs' parameters characterizing the material mismatch. Second, the effect of interface properties on crack path selection is investigated. DCB specimens with substrates treated using various surface preparation methods are tested under mixed mode fracture loading to determine the effect of interface properties on the locus of failure. As indicated by the post-failure analyses, debonding tends to be more interfacial as the mode II fracture component in the loading increases. On the other hand, failures in specimens prepared with more advanced surface preparation techniques appear more cohesive for given loading conditions. Using a high-speed camera to monitor the fracture sequence, DCB specimens are tested quasi-statically and the XPS analyses conducted on the failure surfaces indicate that the effect of crack propagation rate on the locus of failure is less significant when more advanced surface preparation techniques are used. The effect of asymmetric interface property on the behavior of directionally unstable crack propagation in adhesive bonds is also investigated. Geometrically-symmetric DCB specimens with asymmetric surface pretreatments are prepared and tested under low-speed impact. As indicated by Auger depth profile results, the centerline of the crack trajectory shifts slightly toward the interface with poor adhesion due to the asymmetric interface properties. Third, through varying the rubber content in the adhesive, DCB specimens with various fracture toughnesses are prepared and tested. An examination of the failure surfaces reveals that directionally unstable crack propagation is more unlikely to occur as the toughness of the adhesive increases, which is consistent with the analytical predictions that were discussed using an energy balance model.  相似文献   

9.
Fracture toughness and crack resistance of aluminum adhesive joints were measured at the cryogenic temperature of ?150°C, with respect to the orientation and volume fraction of the E-glass fibers in the epoxy adhesive. Cleavage tests on the DCB (Double Cantilever Beam) adhesive joints were performed using two different test rates of 1.67 × 10?2 and 8.33 × 10?4 mm/s to observe the crack propagation trends. From the experiments, it was found that the DCB joints bonded with the epoxy adhesive reinforced with E-glass fibers not only showed a stable crack propagation with a low crack propagation speed, but also higher fracture toughness and crack resistance than those of the DCB joints bonded with the unreinforced epoxy adhesive at a cryogenic temperature of ?150°C.  相似文献   

10.
This paper investigates the role of material properties on crack path selection in adhesively bonded joints. First, a parametric study of directionally unstable crack propagation in adhesively-bonded double cantilever beam specimens (DCB) is presented. The results indicate that the characteristic length of directionally unstable cracks varies with the Dundurs' parameters characterizing the material mismatch. Second, the effect of interface properties on crack path selection is investigated. DCB specimens with substrates treated using various surface preparation methods are tested under mixed mode fracture loading to determine the effect of interface properties on the locus of failure. As indicated by the post-failure analyses, debonding tends to be more interfacial as the mode II fracture component in the loading increases. On the other hand, failures in specimens prepared with more advanced surface preparation techniques appear more cohesive for given loading conditions. Using a high-speed camera to monitor the fracture sequence, DCB specimens are tested quasi-statically and the XPS analyses conducted on the failure surfaces indicate that the effect of crack propagation rate on the locus of failure is less significant when more advanced surface preparation techniques are used. The effect of asymmetric interface property on the behavior of directionally unstable crack propagation in adhesive bonds is also investigated. Geometrically-symmetric DCB specimens with asymmetric surface pretreatments are prepared and tested under low-speed impact. As indicated by Auger depth profile results, the centerline of the crack trajectory shifts slightly toward the interface with poor adhesion due to the asymmetric interface properties. Third, through varying the rubber content in the adhesive, DCB specimens with various fracture toughnesses are prepared and tested. An examination of the failure surfaces reveals that directionally unstable crack propagation is more unlikely to occur as the toughness of the adhesive increases, which is consistent with the analytical predictions that were discussed using an energy balance model.  相似文献   

11.
Symmetric and unsymmetric double cantilever beam (DCB) specimens were tested and analyzed to assess the effect of (1) adherend thickness and (2) a predominantly mode I mixed mode loading on cyclic debond growth and static fracture toughness. The specimens were made of unidirectional composite (T300/5208) adherends bonded together with EC3445 structural adhesive. The thickness was 8, 16 or 24 plies. The experimental results indicated that the static fracture toughness increases and the cyclic debond growth rate decreases with increasing adherend thickness. This behavior was related to the length of the plastic zone ahead of the debond tip. For the symmetric DCB specimens, it was further found that displacement control tests resulted in higher debond growth rates than did load control tests. While the symmetric DCB tests always resulted in cohesive failures in the bondline, the unsymmetric DCB tests resulted in the debond growing into the thinner adherend and the damage progressing as delamination in that adherend. This behavior resulted in much lower fracture toughness and damage growth rates than found in the symmetric DCB tests.  相似文献   

12.
Adhesives used in structural high temperature aerospace applications must operate in extreme environments. They need to exhibit high-temperature capabilities in order to maintain their mechanical properties and their structural integrity at the intended service temperature. One of the main problems caused by high temperature conditions is the fact that the adhesives have different mechanical properties with temperature. As is known, adhesive strength generally shows temperature dependence. Similarly, the fracture toughness is expected to show temperature dependence.In this work, the Double Cantilever Beam (DCB) test is analysed in order to evaluate the effect of the temperature on the adhesive mode I fracture toughness of a high temperature epoxy adhesive. Cohesive zone models, in which the failure behaviour is expressed by a bilinear traction–separation law, have been used to define the adhesive behaviour and to predict the adhesive Pδ curves as a function of temperature. The simulation response for various temperatures matched the experimental results very well. The sensitivity of the various cohesive zone parameters in predicting the overall mechanical response as a function of temperature was examined as well for a deeper understanding of this predictive method. Also, issues of mesh sensitivity were explored to ensure that the results obtained were mesh independent.  相似文献   

13.
This paper presents an investigation of the durability of two aluminum-epoxy adhesive systems by means of open-faced peel specimens. A peel analysis model was used to determine the fracture energy from the peel data. Both wet and dry peel tests were conducted in order to distinguish between the reversible and the permanent effects of water. The effects of water on the cohesive properties of the adhesives were also assessed by tension tests. It was found that, for the two-part epoxy adhesive, which plasticized to a large extent, the peel testing should be carried out in a dry state to assess the interfacial weakening. It was also observed that the two-part adhesive was much stiffer in the dry, degraded state, and it was important to take account of such permanent changes in the cohesive properties associated with water uptake when determining the fracture energy from the peel data. In contrast, the one-part epoxy system did not suffer from appreciable cohesive changes, either reversible or permanent. In this case, both wet and dry failure loci were interfacial, and some of the interfacial damage was found to be reversible. Finally, surface analyses of the peel failure surfaces were carried out, and the formation of micro-debonds was identified as a possible mechanism of degradation for the two-part system.  相似文献   

14.
This paper proposes a new methodology for the finite element (FE) modelling of failure in adhesively bonded joints. Cohesive and adhesive failure are treated separately which allows accurate failure predictions for adhesive joints of different thicknesses using a single set of material parameters. In a companion paper (part I), a new smeared-crack model for adhesive joint cohesive failure was proposed and validated. The present contribution gives an in depth investigation into the interaction among plasticity, cohesive failure and adhesive failure, with application to structural joints. Quasi-static FE analyses of double lap-joint specimens with different thicknesses and under different levels of hydrostatic pressure were performed and compared to experimental results. In all the cases studied, the numerical analysis correctly predicts the driving mechanisms and the specimens’ final failure. Accurate fatigue life predictions are made with the addition of a Paris based damage law to the interface elements used to model the adhesive failure.  相似文献   

15.
This paper presents an investigation of the durability of two aluminum-epoxy adhesive systems by means of open-faced peel specimens. A peel analysis model was used to determine the fracture energy from the peel data. Both wet and dry peel tests were conducted in order to distinguish between the reversible and the permanent effects of water. The effects of water on the cohesive properties of the adhesives were also assessed by tension tests. It was found that, for the two-part epoxy adhesive, which plasticized to a large extent, the peel testing should be carried out in a dry state to assess the interfacial weakening. It was also observed that the two-part adhesive was much stiffer in the dry, degraded state, and it was important to take account of such permanent changes in the cohesive properties associated with water uptake when determining the fracture energy from the peel data. In contrast, the one-part epoxy system did not suffer from appreciable cohesive changes, either reversible or permanent. In this case, both wet and dry failure loci were interfacial, and some of the interfacial damage was found to be reversible. Finally, surface analyses of the peel failure surfaces were carried out, and the formation of micro-debonds was identified as a possible mechanism of degradation for the two-part system.  相似文献   

16.
Assessment and evaluation of fracture characteristics are very important in adhesive joint for achieving a safety mode. In this paper, fracture was investigated in mode-I in adhesive composite material/aluminum alloy joints. To achieve this aim, Double Cantilever Beam (DCB) was used to evaluate fracture in mode-I loading (opening). Bonding was realized by epoxy adhesive as one of the most important and widely used adhesives in aerospace and automotive industries. Modified Beam Theory (MBT) and Compliance Calibration Method (CCM) were formulated to calculate Strain Energy Release Rate (SERR). The obtained experimental results were verified by comparison with Finite Element (FE) analysis. FE results were derived from using Virtual Crack Closure Technique (VCCT) and J-integral approaches in two and three dimension (2-D & 3-D) simulation. Experiment tests and numerical analyses showed good agreement and demonstrated the effectiveness of the proposed experiment and numerical methods.  相似文献   

17.
The adhesive fracture energy or fracture toughness of adhesively-bonded joints comprising carbon-fiber-reinforced polymer composite substrates and three different types of adhesives was detemined using a modified single-lap joint (MSLJ). This joint was made by implanting end pre-cracks in the adhesive layer at the center of the bondline of a conventional single-lap joint (SLJ). This modification ensured that the crack propagated from a sharp starter crack from both ends of the overlap during testing, reducing the effect of spew fillets on the measured adhesive fracture toughness scatter band. The MSLJ specimens were tested to failure and the adhesive fracture energy was calculated using the Kinloch–Osiyemi model. The values of the adhesive fracture energy obtained from the MSLJ tests were compared with those from SLJ and the double-cantilever beam (DCB) test geometries. The fracture energy values obtained from the MSLJ specimens were significantly lower than those from SLJ specimens and agreed well with those from DCB specimens. The three differenent types of aerospace grade film adhesives tested were Redux 322, Redux 335K and Redux 319A.  相似文献   

18.
A method for producing adhesively bonded aluminum joints with a predictable loss of fracture strength was developed and evaluated. The method uses an open-faced specimen geometry and a humid high-temperature environment to promote adhesive degradation. The rate of degradation was greatly increased over previous accelerated degradation schemes through the use of MgSO4 as a contaminant. The contaminant was applied as an aerosol in a purpose-built duct having a controlled airflow. Specimens were prepared and subjected to accelerated aging under a variety of conditions and then fractured using a DCB loading jig. It was found that the contaminant surface concentration was a strong determinant of the fracture strength after hot-wet aging. Exposure to the hot-wet environment was shown to have little effect beyond an initial threshold. Standard ultrasonic imaging techniques were incapable of differentiating between fresh and hot-wet aged specimens, in spite of significant differences in the fracture strength. This is consistent with the hypothesis that the approach produced specimens that simulated the effects of environmental attack, since standard ultrasonic methods, such as those used in the present study, cannot detect such losses of fracture strength in the absence of any delamination between adhesive and adherend. FESEM and EDX analysis of the fracture surfaces showed residual aluminum, suggesting an intra-oxide locus of failure consistent with other accelerated degradation methods. The technique can be used to generate adhesive joint specimens to aid the development of ultrasonic methods capable of detecting the loss of fracture strength associated with environmental degradation.  相似文献   

19.
The aim of this research was to develop an experimental–numerical approach to characterize the effect of salt spray environment on adhesively bonded joints and predict the degradation in joint strength. Experiments were conducted on bulk adhesive specimens and single lap joints (SLJs) under salt spray condition and the corresponding experimental results were reported. The environment degradation factor, Deg, was incorporated into a bilinear cohesive zone model (CZM) to simulate the degradation process of the joints. The degraded CZM parameters, determined from static tests on bulk adhesive, were imported into the CZM using an approximate moisture concentration gradient approach. The reduction in residual strength of SLJ under salt spray environment was successfully predicted through comparing the experimental and numerical results.  相似文献   

20.
Mixed-mode fracture of an adhesively-bonded structure made from a commercial adhesive and a dual-phase steel has been studied under different rates. Since mixed-mode fracture occurs along the interface between the steel and the adhesive, the cohesive parameters for the interface were required. The mode-II interfacial properties were deduced in earlier work. In this paper the mode-I interfacial toughness and the mode-I interfacial strength were determined at different rates. The mode-I interfacial strength was not affected by rate up to crack velocities at levels associated with impact conditions, and was essentially identical to the cohesive strength appropriate for crack growth within the adhesive layer. The mode-I toughness was reduced by about 40% when the crack propagated along the interface rather than within the adhesive. Furthermore, transitions to a brittle mode of failure occurred in a stochastic fashion, and were associated with a drop in interfacial toughness by a factor of about five. The mode-I interfacial parameters were combined with the previously-determined mode-II interfacial parameters within a cohesive-zone model to analyze the mixed-mode fracture of the joints which exhibited both quasi-static and unstable fracture. The mixed-mode model and the associated cohesive parameters for both quasi-static and unstable crack propagation provide bounds for predicting the behavior of the bonded joints under various rates of loading, up to the impact conditions that could be appropriate for automotive design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号