首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
超快速冷却工艺及其工业化实践   总被引:2,自引:0,他引:2  
简要介绍了超快速冷却技术及其在国内外的发展和应用情况,重点介绍了其在热轧板带及中厚板生产中的工业化应用情况,指出充分挖掘该技术的应用潜力,将对我国钢铁产品的品牌提升产生显著效果。  相似文献   

2.
利用超快速冷却装置,通过控制轧后冷却路径,对某中碳钢的显微组织和力学性能进行了系统的研究.结果表明:超快速冷却可以抑制先共析铁索体的生成,破坏原有先共析铁素体的网状分布;超快速冷却显著缩小了珠光体的片层间距;随着超快速冷却后温度的降低,实验钢的强度和室温冲击韧性同时得到了提高.高温终轧+超快速冷却工艺可以使中碳钢获得良好的力学性能,避免了低温轧制带来的轧机负荷大的弊端,提高了轧制节奏.  相似文献   

3.
针对韶钢炼轧厂生产成本过高的问题,引进了超快速冷却装置。通过对钢筋进行轧后快速冷却,实现较低合金成份的钢坯轧制出综合性能符合国家标准的热轧带肋钢筋,从而大幅度降低成本。  相似文献   

4.
5.
6.
7.
 分析了轧后加速冷却过程中带钢表面的局部换热机理,认为冷却系统实现超快速冷却的关键在于扩大带钢表面射流冲击换热区的面积。确定了薄带钢实现超快速冷却所需的对流换热系数,并采用有限元分析工具ANSYS模拟得到了超快速冷却条件下不同厚度带钢的温度场。温度场的分布表明薄带钢在超快速冷却过程中具有较好的温度一致性。同时还表明随着带钢厚度增加,超快速冷却条件下厚度方向的温度梯度显著增大,对于带钢内部组织的均匀性将产生不利的影响。带钢厚度范围应是超快速冷却技术实际应用过程中的重要考虑因素。  相似文献   

8.
热带钢超快速冷却条件下的对流换热系数研究   总被引:4,自引:0,他引:4  
王昭东  袁国  王国栋  刘相华 《钢铁》2006,41(7):54-56,64
建立了热带钢超快速冷却过程的导热微分方程,采用有限差分方法计算了薄带钢实现超快速冷却(对于4 mm以下的薄带钢,冷却速率可达300℃/s)所需的带钢表面对流换热系数.同时,在实验室条件下采用厚度为20 mm的钢板进行了超快速冷却试验,得到了超快速冷却条件下的带钢表面对流换热系数与冷却水流量的关系.结果表明,在一定水流量范围内随着冷却水量的增加,带钢表面换热系数逐渐增加;采用所确定的换热系数对不同厚度钢板得到的温降曲线与实测值吻合较好,具有较高的精度.  相似文献   

9.
分析了原有层流冷却技术存在的问题,提出了超快速冷却设备在中厚板厂中的应用  相似文献   

10.
针对国内某钢厂大断面轴承钢棒材连铸连轧后(棒材直径≥60 mm)先共析碳化物网状等级超标问题,通过对前期的研究工作进行归纳总结,在保证连铸连轧的基础上设置新型水冷系统并进行超快速冷却工业化试验,检验冷却到室温后棒材微观组织性能和先共析碳化物网状等级。试验结果表明:通过高温终轧后设定合理的超快速冷却工艺参数可以显著提高棒材表层以及芯部的冷却速率,抑制强碳化物形成元素的晶界处偏析。超快冷后棒材的室温微观组织均为片层珠光体。晶界处先共析碳化物的网状析出得到消除,仅在棒材芯部有少量碳化物呈弥散分布,碳化物网状等级符合行业标准。  相似文献   

11.
The ultra-fast cooling technology of large section bars and the microstructure for different cooling patterns were studied by optical microscope, transmission electron microscope and energy spectrometer. The results indicated that the large section bars were passed through the zone of secondary carbide precipitation quickly by ultra-fast cooling technology (UFC) at instantaneous cooling rate of about 200 ℃/s and the finishing cooling temperature was higher than M,. The lamellar spacing of pearlite decreased and the microhardness increased with decreasing the re-reddening temperature. The precipitation of network carbide was restrained when rereddening temperature was 690 ℃. And fine laminated pearlite was obtained through transformation of pseudopearlition that induced the reduction of the diameter of pearlite grain and refinement of the lamellar spacing of pearlite, so ideal microstructures of promoting spheroidizing annealing were obtained.  相似文献   

12.
结合国内中厚板生产需求,基于射流冷却的原理开发出新一代轧后冷却系统,其特点是以特定角度将一定 压力的冷却水喷射到钢板表面,达到钢板和冷却水之间的完全接触,实现核沸腾,从而大幅度提高冷却效率和冷却 均匀性。在此设备进行了基于超快冷技术的新一代TMCP工艺的研究工作,生产结果表明采用新一代TMCP工 艺可明显提高产品的强度和韧性、改善钢材的综合性能,并可大幅度降低钢中合金元素的添加量,从而实现高等级 品种钢的低成本减量化轧制。  相似文献   

13.
 超快冷技术是用新一代TMCP工艺理念开发低成本高性能钢铁材料的核心。热轧板带钢轧后工艺控制点温度的控制精度是保证带钢性能和质量的关键因素。基于前期开发的装备和工艺建立了超快冷自适应控制系统模型,并对模型的自适应功能进行了研究,旨在进一步提高轧后工艺控制点温度的控制精度。通过对模型结构的优化设计、模型自学习控制策略的研究及模型自学习系数加权平滑的处理,增强了模型自适应功能。该控制系统已经成功应用于热轧板带钢生产线。现场实践表明,该系统轧后工艺温度控制达到了较高的精度,为产品质量的提高及新产品的开发提供了有力的保证。  相似文献   

14.
轴承钢棒材超快速冷却新工艺的应用研究   总被引:2,自引:0,他引:2  
孙艳坤  吴迪 《钢铁》2008,43(7):47-0
 针对国内某钢厂连轧生产线上出现的网状碳化物严重析出问题,提出高温终轧后超快速冷却与缓冷相配合技术,在精轧机后安装超快速冷却器,对60 mm棒材高温终轧后超快速冷却到一定温度后缓冷,从而抑制了网状碳化物的析出,使过冷奥氏体完全发生伪共析转变而得到细片层间距的珠光体型组织-索氏体,并促进珠光体形核减小珠光体球团直径,减小C原子扩散能力细化了珠光体片层间距,得到了利于球化退火的理想组织。  相似文献   

15.
冷却工艺对超低碳贝氏体钢强韧性影响的研究   总被引:11,自引:0,他引:11  
侯华兴  于功利  张鹏远  张涛  刘明 《钢铁》2006,41(3):44-50
研究了一种含有Cu、Ni、Mo、Nb、B等元素的超低碳贝氏体钢,以搞清楚其在不同的热机械处理 弛豫-析出-控制相变技术 回火工艺(TMCP RPC T)条件下组织和强韧性能的变化规律.实验室研究和工业试制表明,随着工艺制度的不同,钢的显微组织表现为粒状贝氏体和板条贝氏体的比例、形态、尺寸不同;在一定的冷却速度下,轧态钢的屈服强度、抗拉强度和屈强比随终冷温度的降低呈现上升趋势;回火后钢的屈强比较热轧态有所提高.试验条件下,回火温度对Nb析出数量的影响不明显,加热时Nb的固溶程度对该钢的最终组织有明显影响;采用TMCP RPC、TMCP RPC T工艺路线,通过调整工艺参数,能够获得不同性能组合的钢板,实现高性能钢种的柔性化设计.  相似文献   

16.
田发禹 《工业炉》2010,32(4):27-30
根据高强钢生产工艺对冷却速率的要求,分析了在连续退火工艺中,喷气冷却对带钢冷却速率的影响,并提出了相应的措施提高带钢冷却速率,达到了喷气冷却生产高强钢的目的。  相似文献   

17.
通过改变终轧温度及轧后冷却速度,研究了终轧温度及轧后冷却速度对力学性能的影响。研究结果表明:采用轧后加速冷却的方法,可以显著细化Q460的铁素体晶粒,从而提高其强韧性能。当冷速从2℃/s提高到3.86℃/s时,铁素体晶粒直径从11.5μm细化到8.33μm。当冷速达到2.96℃/s以上时,Rel≥475MPa,Rm≥600MPa,屈强比为70%-80%。  相似文献   

18.
19.
利用Gleeble 3500热模拟试验机研究了铌-钛微合金化试验钢在变形与未变形条件下的连续冷却相变规律。研究结果表明:试验钢在2~50℃/s的较大冷速范围内均可获得贝氏体组织,且随着冷却速度的增加,组织中粒状贝氏体的量下降,板条贝氏体的量增加;同时变形促进相变,有利于奥氏体中新相的形成。用热膨胀法建立了试验钢静态与动态条件下的连续冷却转变(CCT)曲线。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号