首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using fuel cell systems for distributed generation (DG) applications represents a meaningful candidate to conventional plants due to their high power density and the heat recovery potential during the electrochemical reaction. A hybrid power system consisting of a proton exchange membrane (PEM) fuel cell stack and an organic Rankine cycle (ORC) is proposed to utilize the waste heat generated from PEM fuel cell. The system performance is evaluated by the steady-state mathematical models and thermodynamic laws. Meanwhile, a parametric analysis is also carried out to investigate the effects of some key parameters on the system performance, including the fuel flow rate, PEM fuel cell operating pressure, turbine inlet pressure and turbine backpressure. Results show that the electrical efficiency of the hybrid system combined by PEM fuel cell stack and ORC can be improved by about 5% compared to that of the single PEM fuel cell stack without ORC, and it is also indicated that the high fuel flow rate can reduce the PEM fuel cell electrical efficiency and overall electrical efficiency. Moreover, with an increased fuel cell operating pressure, both PEM fuel cell electrical efficiency and overall electrical efficiency firstly increase, and then decrease. Turbine inlet pressure and backpressure also have effects on the performance of the hybrid power system.  相似文献   

2.
Fuel cell power systems are emerging as promising means of electrical power generation on account of the associated clean electricity generation process, as well as their suitability for use in a wide range of applications. During the design stage, the development of a computer model for simulating the behaviour of a system under development can facilitate the experimentation and testing of that system's performance. Since the electrical power output of a fuel cell stack is seldom at a suitable fixed voltage, conditioning circuits and their associated controllers must be incorporated in the design of the fuel cell power system. This paper presents a MATLAB/Simulink model that simulates the behaviour of a Proton Exchange Membrane Fuel Cell (PEMFC), conditioning circuits and their controllers. The computer modelling of the PEMFC was based on adopted mathematical models that describe the fuel cell's operational voltage, while accounting for the irreversibilities associated with the fuel cell stack. The conditioning circuits that are included in the Simulink model are a DC–DC converter and DC–AC inverter circuits. These circuits are the commonly utilized power electronics circuits for regulating and conditioning the output voltage from a fuel cell stack. The modelling of the circuits is based on relationships that govern the output voltage behaviour with respect to their input voltages, switching duty cycle and efficiency. In addition, this paper describes a Fuzzy Logic Controller (FLC) design that is aimed at regulating the conditioning circuits to provide and maintain suitable electrical power for a wide range of applications. The model presented demonstrates the use of the FLC in conjunction with the PEMFC Simulink model and that it is the basis for more in-depth analytical models.  相似文献   

3.
This article presents the concept and mathematical treatment for a techno-economic modelling framework designed to enable exploration of fuel cell micro combined heat and power (micro-CHP) system design and control. The aim is to provide a tool that can help to focus research and development attention on the system characteristics critical for commercial success of these technologies, present cost targets for developers, and to ensure policy makers provide appropriate instruments to support commercialisation. The model is distinctive in that it applies mixed integer unit commitment formulation to link design and control decisions for micro-CHP, and explicitly characterises stack degradation in a techno-economic framework. It is structured to provide depiction of the fuel cell stack and balance-of-plant, supplementary thermal-only system (e.g. tail gas burner), thermal energy storage, and electrical power storage. Technically, the fuel cell stack is characterised by steady-state thermal and electrical efficiencies for full and part-load operation, its nameplate capacity, minimum operating set-point, and stack degradation via performance loss rate proportional to power density and thermal cycling rate. The dynamics of operation are emulated via ramp limits, minimum up-time and minimum down-time constraints, and start-up and shutdown costs and energy consumptions. The primary performance evaluation metric adopted is the maximum additional capital cost a rational investor would pay for the fuel cell micro-CHP system over and above what they would pay for a competing conventional heating system. The companion article (Part 2) applies the developed model to consider the impact of stack degradation on economic and environmental performance.  相似文献   

4.
A novel portable electric power generation system, fuelled by ammonia, is introduced and its performance is evaluated. In this system, a solid oxide fuel cell (SOFC) stack that consists of anode-supported planar cells with Ni-YSZ anode, YSZ electrolyte and YSZ-LSM cathode is used to generate electric power. The small size, simplicity, and high electrical efficiency are the main advantages of this environmentally friendly system. The results predicted through computer simulation of this system confirm that the first-law efficiency of 41.1% with the system operating voltage of 25.6 V is attainable for a 100 W portable system, operated at the cell voltage of 0.73 V and fuel utilization ratio of 80%. In these operating conditions, an ammonia cylinder with a capacity of 0.8 l is sufficient to sustain full-load operation of the portable system for 9 h and 34 min. The effect of the cell operating voltage at different fuel utilization ratios on the number of cells required in the SOFC stack, the first- and second-law efficiencies, the system operating voltage, the excess air, the heat transfer from the SOFC stack, and the duration of operation of the portable system with a cylinder of ammonia fuel, are also studied through a detailed sensitivity analysis. Overall, the ammonia-fuelled SOFC system introduced in this paper exhibits an appropriate performance for portable power generation applications.  相似文献   

5.
Polymer electrolyte membrane (PEM) fuel cells convert the chemical energy of hydrogen and oxygen directly into electrical energy. Waste heat and water are the reaction by‐products, making PEM fuel cells a promising zero‐emission power source for transportation and stationary co‐generation applications. In this study, a mathematical model of a PEM fuel cell stack is formulated. The distributions of the pressure and mass flow rate for the fuel and oxidant streams in the stack are determined with a hydraulic network analysis. Using these distributions as operating conditions, the performance of each cell in the stack is determined with a mathematical, single cell model that has been developed previously. The stack model has been applied to PEM fuel cell stacks with two common stack configurations: the U and Z stack design. The former is designed such that the reactant streams enter and exit the stack on the same end, while the latter has reactant streams entering and exiting on opposite ends. The stack analysed consists of 50 individual active cells with fully humidified H2 or reformate as fuel and humidified O2 or air as the oxidant. It is found that the average voltage of the cells in the stack is lower than the voltage of the cell operating individually, and this difference in the cell performance is significantly larger for reformate/air reactants when compared to the H2/O2 reactants. It is observed that the performance degradation for cells operating within a stack results from the unequal distribution of reactant mass flow among the cells in the stack. It is shown that strategies for performance improvement rely on obtaining a uniform reactant distribution within the stack, and include increasing stack manifold size, decreasing the number of gas flow channels per bipolar plate, and judicially varying the resistance to mass flow in the gas flow channels from cell to cell. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
《Journal of power sources》2005,145(2):534-545
For passenger fuel cell vehicles (FCVs), customers will expect to start the vehicle and drive almost immediately, implying a very short system warmup to full power. While hybridization strategies may fulfill this expectation, the extent of hybridization will be dictated by the time required for the fuel cell system to reach normal operating temperatures. Quick-starting fuel cell systems are impeded by two problems: (1) the freezing of residual water or water generated by starting the stack at below freezing temperatures and (2) temperature-dependent fuel cell performance, improving as the temperature reaches the normal range. Cold start models exist in the literature; however, there does not appear to be a model that fully captures the thermal characteristics of the stack during sub-freezing startup conditions. Existing models lack the following features: (1) modeling of stack internal heating methods (other than stack reactions) and their impact on the stack temperature distribution and (2) modeling of endplate thermal mass effect on end cells and its impact on the stack temperature distribution.The focus of this research is the development and use of a sub-freezing thermal model for a polymer electrolyte fuel cell stack. Specifically, the work has focused on the generation of a model in which the fuel cell is separated into layers to determine an accurate temperature distribution within the stack. Unlike a lumped model, which may use a single temperature as an indicator of the stack's thermal condition, a layered model can reveal the effect of the endplate thermal mass on the end cells, and accommodate the evaluation of internal heating methods that may mitigate this effect.  相似文献   

7.
An experimental study on the transient power characteristics of a fuel cell generator has been conducted. The generator is hybridized by a proton exchange membrane (PEM) as the main power source and a lithium-ion battery as the secondary power source. power-conditioning module consisting of a main bidirectional converter and an auxiliary converter has been designed to manage the hybrid power of the generator that copes with fast dynamics of variable loads. Sensors embedded in the generator have measured the electrical properties dynamically. It was found that the present power-conditioning scheme has well controlled the power flow between the fuel cell stack and the battery by regulating the power flow from or to the battery. In addition, the thermal management system using pulse width modulation (PWM) schemes could limit the operation temperature of the fuel cell generator in a designed range. Furthermore, the dynamics of electrical efficiency of the generator are found to be parallel with those of the net system power. Finally, the stability and reliability of the fuel cell generator is proven by the rational dynamic behaviors of thermal and electrical properties for over 30-h demonstration.  相似文献   

8.
In this paper, the performance evaluation of a solid oxide fuel cell (SOFC)–micro gas turbine (MGT) hybrid power generation system under the part-load operation was studied numerically. The present analysis code includes distributed parameters model of the cell stack module. The conversions of chemical species for electrochemical process and fuel reformation process are considered. Besides the temperature distributions of the working fluids and each solid part of cell module by accounting heat generation and heat transfers, are taken into calculation. Including all of them, comprehensive energy balance in the cell stack module is calculated. The variable MGT rotational speed operation scheme is adopted for the part-load operation. It will be made evident that the power generation efficiency of the hybrid system decreases together with the power output. The major reason for the performance degradation is the operating temperature reduction in the SOFC module, which is caused by decreasing the fuel supply and the heat generation in the cells. This reduction is also connected to the air flow rate supplement. The variable MGT rotational speed control requires flexible air flow regulations to maintain the SOFC operating temperature. It will lead to high efficient operation of the hybrid system.  相似文献   

9.
In this paper, a load transient mitigation technique for stand-alone fuel cell (FC)-battery power generation systems is proposed. The technique can be used not only to improve the output power quality of the overall system, but also to mitigate or eliminate the electrical feedback stresses that are caused by load transients upon fuel cells. As a result, the durability of the fuel cell can also be improved. System analysis and controller design procedure for the proposed technique are given in this paper. Simulation studies have been carried out on FC-battery power generation systems using the dynamic models developed for proton exchange membrane fuel cell (PEMFC) and solid-oxide fuel cell (SOFC). Simulation results show the effectiveness of the proposed technique in preventing load transients from affecting the fuel cell performance.  相似文献   

10.
The current evolution in the design of fuel cell systems, together with the considerable development of integrated control techniques in microprocessor systems allows the development of portable fuel cell applications in which optimized control of the fuel cells performance is possible. Control, in the strict sense, implies a thorough knowledge of both the static and dynamic behaviour of the system comprising the stack, manifold and the compressor that enables oxygen supply. The objective of this control, far from being simply to maintain the stack free from oxygen and hydrogen shortages, is to achieve the necessary values of these gases, minimizing compressor consumption, which is the cause of the greatest inefficiency of fuel cells. This objective is essential when fuel cell systems are involved in situations where the net power of the stack is reduced and any unnecessary consumption lowers the total power available to the user. The design of an efficient control system requires the following steps: (1) modeling of the stack, compressor and other pneumatic elements involved in the system. (2) Calculation of the control equations and simulation of the entire system (including control). (3) Emulation of the stack and other pneumatic elements and simulation utilizing the designed control system. (4) Physical realization of the control system and testing within the fuel cell system. The design of a control system for fuel cell systems is introduced to manage PEMFC stacks. The control system will guarantee the correct performance of the stack around its optimal operation point, in which the net power is maximized. This means that both, the air flow and the stack temperature are controlled to a correct value.  相似文献   

11.
An experimental hybrid power generation platform for the design and assessment of advanced control systems has been developed. It is specifically intended as a flexible development tool for the implementation and refinement of real-time novel control algorithms, aimed to maximize energy efficiency and optimize the electrical power management of hybrid generation systems based on fuel cells. The platform consists of two generation modules and storage module. The main one is based on a PEM fuel cell stack. The second one, implemented with a programmable electronic source, allows to emulate an alternative energy module, particularly a wind energy generation system. The storage module is built with Supercapacitors. Finally, a variable electronic load represents the lumped energy demand, with profiles that can be programmed in accordance with the user requirements. All modules of the system are connected to a common DC bus through intermediary electronic converters, which are controlled by a dedicated digital signal processor. The complete system is supervised through a Personal Computer, resulting into a highly versatile platform. Experimental results are presented to validate the whole system performance.  相似文献   

12.
A proton exchange membrane fuel cell (PEMFC) cogeneration system that provides high-quality electricity and hot water has been developed. A specially designed thermal management system together with a microcontroller embedded with appropriate control algorithm is integrated into a PEM fuel cell system. The thermal management system does not only control the fuel cell operation temperature but also recover the heat dissipated by FC stack. The dynamic behaviors of thermal and electrical characteristics are presented to verify the stability of the fuel cell cogeneration system. In addition, the reliability of the fuel cell cogeneration system is proved by one-day demonstration that deals with the daily power demand in a typical family. Finally, the effects of external loads on the efficiencies of the fuel cell cogeneration system are examined. Results reveal that the maximum system efficiency was as high as 81% when combining heat and power.  相似文献   

13.
In this paper, a fuel cell power generation system fed by hydrogen is analyzed by different performance criteria over the entire range of potential operating conditions. First law efficiency and net power output are considered for conventional energetic indices of performance, and exergy destruction rate is taken into consideration as an exergetic performance criteria. A new exergetic criterion called the exergetic performance coefficient (EPC) is introduced and is applied to the system model based on zero-dimensional approach. The system model consists of the following components: fuel cell stack, afterburner, fuel and air compressors, and heat exchangers. The effects of the operating conditions on the system performance are studied parametrically. The obtained results based on the exergetic performance coefficient criterion are compared with first law efficiency, power output and exergy destruction rate. Results show that design insights of fuel cell systems can be considerably improved when conventional energetic analyses are supplemented with EPC criterion.  相似文献   

14.
15.
We have developed a 2.5 kW class solid oxide fuel cell stack. It is constructed by combining 70 power generation units, each of which is composed of an anode-supported planar cell and separators. The power generation unit for the 2.5 kW class stack were designed so that the height of the unit were scaled down by 2/3 of that for our conventional 1.5 kW class stack. The power generation unit for the 2.5 kW class stack provided the same output as the unit used for the conventional 1.5 kW class stack, which means that power density per unit volume of the 2.5 kW class stack was 50% greater than that of the conventional 1.5 kW class stack.  相似文献   

16.
《Journal of power sources》2002,109(2):287-293
This paper describes an energy recovery system that recovers waste thermal energy from a fuel cell stack and uses it for fuel reforming purposes. The energy recovery system includes a throttling valve, a heat exchanger, and a compressor, and is coupled with a coolant loop of the fuel cell stack. The feed stock of a fuel reformer, which is primarily a mixture of water and fuel, is vaporized in the heat exchanger and is compressed to a sufficiently high pressure before it is ducted into the fuel reformer. The performance of a fuel cell power plant equipped with the energy recovery system is evaluated. The results indicate that the power plant efficiency can be increased by more than 40% compared to that of a fuel cell power plant without the energy recovery system. Additionally, up to 90% of the waste heat generated in the fuel cell stack is recovered. As a result, the required heat dissipation capacity of the radiator that is used for cooling the fuel cell stack can be drastically reduced.  相似文献   

17.
To scale up power generation of the direct borohydride fuel cell (DBFC), 10-cell and 20-cell stacks have been constructed based on the single cell achievements. It has been found that the stacking loss of the DBFC is mainly caused by hydrogen evolution which leads to uneven fuel distribution in each cell of the stack. To reduce stacking loss, several efforts have been made to decrease hydrogen evolution influence on the stack performance. The anode preparation method has been modified from a dry-method to a wet-method. The influence of hydrogen evolution on stack performance can be alleviated by altering fuel supply manner. When hydrogen evolution is suppressed, an even distribution of cell voltage can be obtained and the maximum power of 10-cell stack reaches up to 229 W.  相似文献   

18.
A parametric model predicting the performance of a solid polymer electrolyte, anion exchange membrane fuel cell (AEMFC), has been developed, in Matlab environment, based on interrelated electrical and thermal models. The electrical model proposed is developed by modelling an AEMFC open-circuit output voltage, irreversible voltage losses along with a mass balance, while the thermal model is based on the energy balance. The proposed model of the AEMFC stack estimates its dynamic behaviour, in particular the operating temperature variation for different discharge current values. The results of the theoretical fuel cell (FC) stack are reported and analysed in order to highlight the FC performance and how it varies by changing the values of some parameters such as temperature and pressure. Both the electrical and thermal FC models were validated by comparing the model results with experimental data and the results of other models found in the literature.  相似文献   

19.
This paper is presented to investigate operational characteristics of a direct methanol fuel cell (DMFC) stack with regard to fuel and energy efficiency, including its performance and stability under various operating conditions. Fuel efficiency of the DMFC stack is strongly dependent on fuel concentration, working temperature, current density, and anode channel configuration in the bipolar plates and noticeably increases due to the reduced methanol crossover through the membrane, as the current density increases and the methanol concentration, anode channel depth, and temperature decreases. It is, however, revealed that the energy efficiency of the DMFC stack is not always improved with increased fuel efficiency, since the reduced methanol crossover does not always indicate an increase in the power of the DMFC stack. Further, a lower methanol concentration and temperature sacrifice the power and operational stability of the stack with the large difference of cell voltages, even though the stack shows more than 90% of fuel efficiency in this operating condition. The energy efficiency is therefore a more important characteristic to find optimal operating conditions in the DMFC stack than fuel efficiency based on the methanol utilization and crossover, since it considers both fuel efficiency and cell electrical power. These efforts may contribute to commercialization of the highly efficient DMFC system, through reduction of the loss of energy and fuel.  相似文献   

20.
A novel, highly integrated tubular SOFC system intended for small-scale power is characterized through a series of sensitivity analyses and parametric studies using a previously developed high-fidelity simulation tool. The high-fidelity tubular SOFC system modeling tool is utilized to simulate system-wide performance and capture the thermofluidic coupling between system components. Stack performance prediction is based on 66 anode-supported tubular cells individually evaluated with a 1-D electrochemical cell model coupled to a 3-D computational fluid dynamics model of the cell surroundings. Radiation is the dominate stack cooling mechanism accounting for 66-92% of total heat loss at the outer surface of all cells at baseline conditions. An average temperature difference of nearly 125 °C provides a large driving force for radiation heat transfer from the stack to the cylindrical enclosure surrounding the tube bundle. Consequently, cell power and voltage disparities within the stack are largely a function of the radiation view factor from an individual tube to the surrounding stack can wall. The cells which are connected in electrical series, vary in power from 7.6 to 10.8 W (with a standard deviation, σ = 1.2 W) and cell voltage varies from 0.52 to 0.73 V (with σ = 81 mV) at the simulation baseline conditions. It is observed that high cell voltage and power outputs directly correspond to tubular cells with the smallest radiation view factor to the enclosure wall, and vice versa for tubes exhibiting low performance. Results also reveal effective control variables and operating strategies along with an improved understanding of the effect that design modifications have on system performance. By decreasing the air flowrate into the system by 10%, the stack can wall temperature increases by about 6% which increases the minimum cell voltage to 0.62 V and reduces deviations in cell power and voltage by 31%. A low baseline fuel utilization is increased by decreasing the fuel flowrate and by increasing the stack current demand. Simulation results reveal fuel flow as a poor control variable because excessive tail-gas combustor temperatures limit fuel flow to below 110% of the baseline flowrate. Additionally, system efficiency becomes inversely proportional to fuel utilization over the practical fuel flow range. Stack current is found to be an effective control variable in this type of system because system efficiency becomes directly proportional to fuel utilization. Further, the integrated system acts to dampen temperature spikes when fuel utilization is altered by varying current demand. Radiation remains the dominate heat transfer mechanism within the stack even if stack surfaces are polished lowering emissivities to 0.2. Furthermore, the sensitivity studies point to an optimal system insulation thickness that balances the overall system volume and total conductive heat loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号