首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Controlled teleportation   总被引:1,自引:0,他引:1  
In this article, we review the recent development of controlled teleportation which can be used for sharing quantum information and has important applications in remote quantum computation. We introduce the principles of a couple of controlled teleportation schemes with maximally entangled quantum channels and those with pure entangled quantum channels (non-maximally entangled states). The schemes based on maximally entangled states have the advantage of having maximal efficiency although there are differences in their implementations in experiment. In the controlled teleportation schemes using non-maximally entangled states as the quantum channels, the receiver can reconstruct the originally unknown state by adding an auxiliary particle and performing a unitary evolution. No matter what the unknown state is (a single qubit state or an m-qudit state), the auxiliary particle required is only a two-level quantum system.  相似文献   

2.
In this article, we review the recent development of controlled teleportation which can be used for sharing quantum information and has important applications in remote quantum computation. We introduce the principles of a couple of controlled teleportation schemes with maximally entangled quantum channels and those with pure entangled quantum channels (non-maximally entangled states). The schemes based on maximally entangled states have the advantage of having maximal efficiency although there are differences in their implementations in experiment. In the controlled teleportation schemes using non-maximally entangled states as the quantum channels, the receiver can reconstruct the originally unknown state by adding an auxiliary particle and performing a unitary evolution. No matter what the unknown state is (a single qubit state or an m-qudit state), the auxiliary particle required is only a two-level quantum system.  相似文献   

3.
In this paper, two theoretical schemes of the arbitrary single-qubit states via four-qubit cluster state are proposed. One is three-party quantum broadcast scheme, which realizes the broadcast among three participants. The other is multi-output quantum teleportation. Both allow two distant receivers to simultaneously and deterministically obtain the arbitrary single-qubit states, respectively. Compared with former schemes of an arbitrary single-qubit state, the proposed schemes realize quantum multi-cast communication efficiently, which enables Bob and Charlie to obtain the states simultaneously in the case of just knowing Alice’s measurement results. The proposed schemes play an important role in quantum information, specially in secret sharing and quantum teleportation.  相似文献   

4.
目的是利用高维量子纠缠态为量子信道,讨论未知单粒子态的受控隐形传输问题。以三维量子纠缠态为信道,提出一个二维任意单粒子态的受控隐形传输协议。提出了以任意[d]-维量子纠缠态为量子信道,[t]-维任意单粒子态的隐形传输协议[(t相似文献   

5.
We propose two deterministic secure quantum communication protocols employing three-qubit GHZ-like states and five-qubit Brown states as quantum channels for secure transmission of information in units of two bits and three bits using multipartite teleportation schemes developed here. In these schemes, the sender’s capability in selecting quantum channels and the measuring bases leads to improved qubit efficiency of the protocols.  相似文献   

6.
We propose quantum information processing schemes based on cavity quantum electrodynamics (QED) for quantum communication. First, to generate entangled states (Bell and Greenberger–Horne–Zeilinger [GHZ] states) between flying photons and three-level atoms inside optical cavities, we utilize a controlled phase flip (CPF) gate that can be implemented via cavity QED). Subsequently, we present an entanglement swapping scheme that can be realized using single-qubit measurements and CPF gates via optical cavities. These schemes can be directly applied to construct an entanglement channel for a communication system between two users. Consequently, it is possible for the trust center, having quantum nodes, to accomplish the linked channel (entanglement channel) between the two separate long-distance users via the distribution of Bell states and entanglement swapping. Furthermore, in our schemes, the main physical component is the CPF gate between the photons and the three-level atoms in cavity QED, which is feasible in practice. Thus, our schemes can be experimentally realized with current technology.  相似文献   

7.
An efficient scheme is proposed for faithful teleportation of an arbitrary unknown multi-particle state via multi-particle quantum states, in which the teleportation is completely deterministic providing that one can successfully construct a group of EPR pairs. Our scheme can effectively avoid possible destruction of the unknown state to be teleported, which however may occur in existing probabilistic teleportation schemes. In addition, we develop a scheme for establishing a faithful quantum channel for both indirect and direct teleportation multi-particle system, which can be applied in a teleportation network where intermediate agents exist between a sender and a receiver. Compared to the indirect construction of the faithful channel, the required auxiliary particle resources, local operations and classical communications in the direct construction scheme are considerably reduced.  相似文献   

8.
In this paper we propose two schemes for teleportation of a sub-class of tripartite states, the first one with the four-qubit cluster state and the second one with two Bell pairs as entanglement channels. A four-qubit joint measurement in the first case and two Bell measurements in the second are performed by the sender. Appropriate unitary operations on the qubits at the receiver’s end along with an ancilla qubit result in the perfect teleportation of the tripartite state. Analysis of the quantum circuits employed in these schemes reveal that in our technique the desired quantum tasks are achieved with lesser quantum cost, gate count and classical communication bits compared with other similar schemes.  相似文献   

9.
Simple schemes are proposed for implementing deterministic teleportation, superdense coding, and quantum information splitting with W-type entangled states. The physical realization of these schemes should be much simpler than previous ones due to the assistance of an auxiliary particle. We illustrate the ideas in cavity quantum electrodynamics. The important features of our schemes can also be demonstrated in other systems.  相似文献   

10.
融合了双向隐形传态、受控隐形传态、概率隐形传态及多参数测量思想,提出了一个新的双向受控概率隐形传态协议。在该协议中,以五粒子非最大纠缠团簇态为信道,发送者采用多参数通用测量,接收者引入辅助粒子,并在控制者的允许下,利用测量信息施行适当酉变换,就能以一定概率同时交换他们的量子态。分析了成功概率(经典耗费)与量子纠缠参数及测量参数间的依赖关系,说明了该协议可以根据量子信道的参数来调整多参数测量的参数,达到调节成功概率或经典耗费,满足真实世界中多种不同需求的目的。此外,该协议是经典双向受控隐形传态的推广。  相似文献   

11.
We investigate teleportation and controlled teleportation of an arbitrary $N$ -qubit state by using a multipartite entanglement channel. By establishing one-to-one correspondence between an $N$ -qubit quantum state and a high-dimension quantum state, we construct a general quantum channel for quantum teleportation and controlled teleportation of an arbitrary $N$ -qubit state. Furthermore, we generalize the definition of bipartite maximally entangled state for a multi-qubit system, and show that our teleportation protocols can be utilized not only to construct a variety of genuine multipartite entangled states, but also to identify and explore the capability of multipartite entanglement for quantum teleportation and controlled teleportation.  相似文献   

12.
提出传送任意三粒子纠缠态的三个方案,分别是利用三对二粒子纠缠态、单个三粒子最大纠缠态和利用两个EPR态作为量子通道实现三粒子纠缠态的传送。通过发送者(Alice)对需传送的三粒子纠缠态与属于自己的纠缠对中的粒子分别进行适当的Bell基测量,然后把结果通过经典通道告诉接收者(Bob),接收者根据这些信息对自己拥有的三粒子进行相应的联合幺正变换,就可以实现一定概率的隐形传态。这些方案都可以推广至N个粒子纠缠态的传送。  相似文献   

13.
利用三量子最大slice态作为量子信道,提出了单量子酉算子的受控远程执行的两个协议.首先,利用双向量子隐形传态(BQST),给出了一个任意单量子酉算子的受控隐形传输方案.结果 表明,通过非最大纠缠信道,发送者能够在遥远的接受者的量子系统上远程地执行一个任意单量子酉算子.如果发送者和控制者对各自量子执行恰当的投影测量,那...  相似文献   

14.
We study bipartite entangled states in arbitrary dimensions and obtain different bounds for the entanglement measures in terms of teleportation fidelity. We find that there is a simple relation between negativity and teleportation fidelity for pure states, but for mixed states, an upper bound is obtained for negativity in terms of teleportation fidelity using convex-roof extension negativity. However, with this, it is not clear how to distinguish between states useful for teleportation and positive partial transpose (PPT) entangled states. Further, there exists a strong conjecture in the literature that all PPT entangled states, in $3 \otimes 3$ systems, have Schmidt rank two. This motivates us to develop measures capable of identifying states useful for teleportation and dependent on the Schmidt number. We thus establish various relations between teleportation fidelity and entanglement measures depending upon Schmidt rank of the states. These relations and bounds help us to determine the amount of entanglement required for teleportation, which we call the “Entanglement of Teleportation.” These bounds are used to determine the teleportation fidelity as well as the entanglement required for teleportation of states modeled by a two-qutrit mixed system, as well as two-qubit open quantum systems.  相似文献   

15.
An interesting aspect of multipartite entanglement is that for perfect teleportation and superdense coding, not the maximally entangled W states but a special class of non-maximally entangled W-like states are required. Therefore, efficient preparation of such W-like states is of great importance in quantum communications, which has not been studied as much as the preparation of W states. In this paper, we propose a simple optical scheme for efficient preparation of large-scale polarization-based entangled W-like states by fusing two W-like states or expanding a W-like state with an ancilla photon. Our scheme can also generate large-scale W states by fusing or expanding W or even W-like states. The cost analysis shows that in generating large-scale W states, the fusion mechanism achieves a higher efficiency with non-maximally entangled W-like states than maximally entangled W states. Our scheme can also start fusion or expansion with Bell states, and it is composed of a polarization-dependent beam splitter, two polarizing beam splitters and photon detectors. Requiring no ancilla photon or controlled gate to operate, our scheme can be realized with the current photonics technology and we believe it enable advances in quantum teleportation and superdense coding in multipartite settings.  相似文献   

16.
Controlled teleportation against uncooperation of part of supervisors   总被引:1,自引:0,他引:1  
We study the teleportation of an unknown quantum state from a sender (Alice) to a receiver (Bob) via the control of many supervisors (Charlie 1, Charlie 2, . . .) in a network. It has been shown that such a task can be achieved by distributing a GHZ-type entangled state among the participants in advance. In the protocols with GHZ-type entanglement channel, the achievement of teleportation between Alice and Bob is conditioned on the cooperation of all the supervisors. In other words, if anyone of the supervisors does not cooperate, the teleportation will fails. In this paper, we introduce another kind of controlled teleportaton protocol with other types of entangled states acting as the quantum channel, in which the teleportation between Alice and Bob can be realized with high degree of endurance against uncooperation of part of supervisors.   相似文献   

17.
As far as the spectral characteristic of quantum information is concerned, the existing quantum network coding schemes can be looked on as the discrete-variable quantum network coding schemes. Considering the practical advantage of continuous variables, in this paper, we explore two feasible continuous-variable quantum network coding (CVQNC) schemes. Basic operations and CVQNC schemes are both provided. The first scheme is based on Gaussian cloning and ADD/SUB operators and can transmit two coherent states across with a fidelity of 1/2, while the second scheme utilizes continuous-variable quantum teleportation and can transmit two coherent states perfectly. By encoding classical information on quantum states, quantum network coding schemes can be utilized to transmit classical information. Scheme analysis shows that compared with the discrete-variable paradigms, the proposed CVQNC schemes provide better network throughput from the viewpoint of classical information transmission. By modulating the amplitude and phase quadratures of coherent states with classical characters, the first scheme and the second scheme can transmit \(4{\log _2}N\) and \(2{\log _2}N\) bits of information by a single network use, respectively.  相似文献   

18.
Quantum teleportation is a computational primitive that allows non-local quantum communication and quantum computation. In this work, we present two schemes for quantum gate teleportation. The first scheme shows under what conditions an n-qudit gate can be teleported using a generalization of Gottesman-Chuang procedure [Nature 402, 390 (1999)]. The second scheme shows that quantum gate teleportation can be transformed in the teleportation of a single-qudit.  相似文献   

19.
The main superiority of the quantum remote preparation over quantum teleportation lies the classical resource saving. This situation may be changed from the following constructions. Our purpose in this paper is to find some special differences between these two quantum tasks besides the classical resource costs. Some novel schemes show that the first one is useful to simultaneously broadcast arbitrary quantum states, while the second one cannot because of the quantum no-cloning theorem. Moreover, these broadcast schemes may be adapted to satisfying the different receivers’ requirements or distributing the classical information, which are important in various quantum applications such as the quantum secret distribution or the quantum network communication.  相似文献   

20.
量子的独特性质使它在秘密共享方面有着很大的应用前景,但在现实情况下秘密代理者的数目会根据实际情况的不同而发生变化。本文利用五粒子或六粒子的纠缠量子态构造了五和六秘密代理者数目下的量子多方秘密共享方案,在此基础上将其拓展并构建了在n个秘密代理者情况下的秘密共享方案。这使得秘密共享者在秘密代理者数目发生变化时能够选取合适的量子秘密共享方案。此外,在每种秘密代理者数目情形下都使用基于量子纠缠的量子隐形传态的方式实现秘密共享,进一步增加了方案的可选择性。最后,对提出的量子多方秘密共享方案的安全性进行了分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号