首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protection of different quantum correlations, such as Bell nonlocality, quantum discord, and geometric quantum discord as trace distance against noise, is explored. By weak measurement and quantum measurement reversal, we show that the mentioned quantum correlations can be effectively preserved probabilistically from the decoherence due to amplitude damping. The results will play an important role in the experiments using the quantum correlations as resource.  相似文献   

2.
In this paper, we demonstrate the revival and robustness of quantum dynamics under local decoherent evolutions through investigating the dynamical behaviors of quantum correlation. The results show that in depolarizing channel, quantum discord damps faster and revivals after a dark interval of time, while the others will revival immediately at the critical point. In addition, in hybrid channel the declining initial condition can speed up the attenuation of quantum discord within a limited time, while it can enable trace distance discord and Bures distance discord to damp more smoothly. In this sense, quantum discord is typically less robust against decoherence than the others. Interestingly, nonlocality shows different decay rates in the vicinity of critical point. Additionally, we lastly provide a physical interpretation concerning these phenomena.  相似文献   

3.
4.
We investigate the dynamics of entanglement, decoherence and quantum discord in a system of three non-interacting superconducting flux qubits (fqubits) initially prepared in a Greenberger–Horne–Zeilinger (GHZ) state and subject to static noise in different, bipartite and common environments, since it is recognized that different noise configurations generally lead to completely different dynamical behavior of physical systems. The noise is modeled by randomizing the single fqubit transition amplitude. Decoherence and quantum correlations dynamics are strongly affected by the purity of the initial state, type of system–environment interaction and the system–environment coupling strength. Specifically, quantum correlations can persist when the fqubits are commonly coupled to a noise source, and reaches a saturation value respective to the purity of the initial state. As the number of decoherence channels increases (bipartite and different environments), decoherence becomes stronger against quantum correlations that decay faster, exhibiting sudden death and revival phenomena. The residual entanglement can be successfully detected by means of suitable entanglement witness, and we derive a necessary condition for entanglement detection related to the tunable and non-degenerated energy levels of fqubits. In accordance with the current literature, our results further suggest the efficiency of fqubits over ordinary ones, as far as the preservation of quantum correlations needed for quantum processing purposes is concerned.  相似文献   

5.
Quantum correlations, including entanglement and discord with its geometric measure in a three-qubit Heisenberg XY chain, with phase decoherence, are investigated when a nonuniform magnetic field is applied. When the qubits are initially in an unentangled state, the nearest neighbor pairwise correlations are destroyed by phase decoherence, but stationary correlations appear for next-to-neighbor qubits. With an inhomogeneous magnetic field, the stationary correlations appear for nearest neighbor qubits and they disappear for next-to-nearest neighbor qubits. But when the qubits are initially in an entangled state, an inhomogeneous magnetic field can enhance the stationary correlations of next-to-neighbor qubits, but it cannot do so for nearest neighbor qubits. The decoherence effect on stationary correlations is much stronger for next-to-nearest neighbor qubits than it is for nearest neighbor qubits. Finally, a uniform magnetic field can affect the correlations when the qubits are initially in an entangled state, but it cannot affect them when the qubits are initially in an unentangled state.  相似文献   

6.
Effect of quantum decoherence in a three-player quantum Kolkata restaurant problem is investigated using tripartite entangled qutrit states. Different qutrit channels such as, amplitude damping, depolarizing, phase damping, trit-phase flip and phase flip channels are considered to analyze the behaviour of players payoffs. It is seen that Alice’s payoff is heavily influenced by the amplitude damping channel as compared to the depolarizing and flipping channels. However, for higher level of decoherence, Alice’s payoff is strongly affected by depolarizing noise. Whereas the behaviour of phase damping channel is symmetrical around 50% decoherence. It is also seen that for maximum decoherence (p = 1), the influence of amplitude damping channel dominates over depolarizing and flipping channels. Whereas, phase damping channel has no effect on the Alice’s payoff. Therefore, the problem becomes noiseless at maximum decoherence in case of phase damping channel. Furthermore, the Nash equilibrium of the problem does not change under decoherence.  相似文献   

7.
We consider a weak measurement reversal proposal to recover quantum correlations of two-qubit system under local amplitude damping channels. With weak measurement reversal, we show that quantum correlations do not vanish but preserve a finite value in the limit of the noise strength $p\rightarrow 1$ , which can be attributed to the probabilistic nature of this method. The experimental feasibility of this approach is also discussed in pure optical systems.  相似文献   

8.
We investigate the thermal quantum discord and classical correlations in a two-qubit Ising model interacting with a site-dependent external magnetic field. Systematic study of all correlations is performed for various values of the system??s temperature, and the magnetic field magnitude and direction on each site. Our results reveal interesting findings as regrowth regions of the classical and quantum correlations. Moreover unexpected bahavior as for example increase of the quantum correlations with the increase of the anisotropy of the applied magnetic fields for specific values of the external parameters is reported. By comparing our quantum discord data with the entanglement of formation, we have concluded that the major source of quantum correlations is the entanglement. Overall, we have found that the independent control of each spin site by external fields is a very practical and robust way of achieving significant quantum discord useful in quantum computation and information proccesses.  相似文献   

9.
We consider local time evolution given by spontaneous emission in the system of independent two-level atoms. It is shown that all classically correlated initial states are driven into the states with transient non-zero quantum discord. Thus local creation of genuine quantum correlations can be observed in a simple physical system of non-interacting atoms which are not completely isolated from the environment.  相似文献   

10.
The evolution of the entanglement between oscillators that interact with the same environment displays highly non-trivial behavior in the long time regime. When the oscillators only interact through the environment, three dynamical phases were identified (Paz and Roncaglia in Phys Rev Lett 100:220401, 2008) and a simple phase diagram characterizing them was presented. Here we generalize those results to the cases where the oscillators are directly coupled and we show how a degree of mixidness can affect the final entanglement. In both cases, entanglement dynamics is fully characterized by three phases (SD: sudden death, NSD: no-sudden death and SDR: sudden death and revivals) which cover a phase diagram that is a simple variant of the previously introduced one. We present results when the oscillators are coupled to the environment through their position and also for the case where the coupling is symmetric in position and momentum (as obtained in the RWA). As a bonus, in the last case we present a very simple derivation of an exact master equation valid for arbitrary temperatures of the environment.  相似文献   

11.
Dynamics of an open two-qubit system is investigated in the post-Markovian regime, where the environments have a short-term memory. Each qubit is coupled to separate environment which is held in its own temperature. The inter-qubit interaction is modeled by XY–Heisenberg model in the presence of spin–orbit interaction and inhomogeneous magnetic field. The dynamical behavior of entanglement and discord has been considered. The results show that quantum discord is more robust than quantum entanglement, during the evolution. Also the asymmetric feature of quantum discord can be monitored by introducing the asymmetries due to inhomogeneity of magnetic field and temperature difference between the reservoirs. By employing proper parameters of the model, it is possible to maintain nonvanishing quantum correlation at high degree of temperature. The results can provide a useful recipe for studying dynamical behavior of two-qubit systems such as trapped spin electrons in coupled quantum dots.  相似文献   

12.
Recently, Brodutch and Modi proposed a general method of constructing meaningful measures of classical and quantum correlations. We systematically apply this method to obtain geometric classical and quantum correlations based on the Bures and the trace distances for two-qubit Bell diagonal states. Moreover, we argue that in general the Brodutch and Modi method may provide non-unique results, and we show how to modify this method to avoid this issue.  相似文献   

13.
In this article, we report the recent progress on decoherence dynamics of electrons in quantum dot quantum computing systems using the exact master equation we derived recently based on the Feynman–Vernon influence functional approach. The exact master equation is valid for general nanostructure systems coupled to multi-reservoirs with arbitrary spectral densities, temperatures and biases. We take the double quantum dot charge qubit system as a specific example, and discuss in details the decoherence dynamics of the charge qubit under coherence controls. The decoherence dynamics risen from the entanglement between the system and the environment is mainly non-Markovian. We further discuss the decoherence of the double-dot charge qubit induced by quantum point contact (QPC) measurement where the master equation is re-derived using the Keldysh non-equilibrium Green function technique due to the non-linear coupling between the charge qubit and the QPC. The non-Markovian decoherence dynamics in the measurement processes is extensively discussed as well.  相似文献   

14.
The possible structures of small He and Ar clusters containing H+ as ionic impurity are shown to be amenable to a detailed analysis of their structures and of the dynamical evolution by means of Ab Initio Molecular Dynamics (AIMD) treatments as well as by quantum treatments via Diffusion Monte Carlo (DMC) approaches. The two methods are briefly reviewed and their computational results are analyzed.  相似文献   

15.
In this paper, we study the quantum coherence dynamics of two-level atom system embedded in non-Markovian reservoir in the presence of classical driving field. We analyze the influence of memory effects, classical driving, and detuning on the quantum coherence. It is found that the quantum coherence has different behaviors in resonant case and non-resonant case. In the resonant case, in stark contrast with previous results, the strength of classical driving plays a negative effect on quantum coherence, while detuning parameter has the opposite effect. However, in non-resonant case through a long time, classical driving and detuning parameter have a different influence on quantum coherence compared with resonant case. Due to the memory effect of environment, in comparison with Markovian regime, quantum coherence presents vibrational variations in non-Markovian regime. In the resonant case, all quantum coherence converges to a fixed maximum value; in the non-resonant case, quantum coherence evolves to different stable values. For zero-coherence initial states, quantum coherence can be generated with evolution time. Our discussions and results should be helpful in manipulating and preserving the quantum coherence in dissipative environment with classical driving field.  相似文献   

16.
Quantum state space is endowed with a metric structure, and Riemannian monotone metric is an important geometric entity defined on such a metric space. Riemannian monotone metrics are very useful for information-theoretic and statistical considerations on the quantum state space. In this article, considering the quantum state space being spanned by \(2\times 2\) density matrices, we determine a particular Riemannian metric for a state \(\rho \) and show that if \(\rho \) gets entangled with another quantum state, the negativity of the generated entangled state is, upto a constant factor, equal to square root of that particular Riemannian metric . Our result clearly relates a geometric quantity to a measure of entanglement. Moreover, the result establishes the possibility of understanding quantum correlations through geometric approach.  相似文献   

17.
We calculate the two-qubit disentanglement due to classical random telegraph noise using the quasi-Hamiltonian method. This allows us to obtain analytical results even for strong coupling and mixed noise, important when the qubits have tunable working point. We determine when entanglement sudden death and revival occur as functions of qubit working point, noise coupling strength and initial state entanglement. For extended Werner states, we show that the concurrence is related to the difference of two functions: one is related to dephasing and the other longitudinal relaxation. A physical interpretation based on the generalized Bloch vector is given: revival only occurs for strongly-coupled noise and comes from the angular motion of the vector.  相似文献   

18.
Following recent developments in quantum PageRanking, we present a comparative analysis of discrete-time and continuous-time quantum-walk-based PageRank algorithms. Relative to classical PageRank and to different extents, the quantum measures better highlight secondary hubs and resolve ranking degeneracy among peripheral nodes for all networks we studied in this paper. For the discrete-time case, we investigated the periodic nature of the walker’s probability distribution for a wide range of networks and found that the dominant period does not grow with the size of these networks. Based on this observation, we introduce a new quantum measure using the maximum probabilities of the associated walker during the first couple of periods. This is particularly important, since it leads to a quantum PageRanking scheme that is scalable with respect to network size.  相似文献   

19.
Measurement-induced nonlocality (MIN)—captures nonlocal effects of a quantum state due to local von Neumann projective measurements, is a bona-fide measure of quantum correlation between constituents of a composite system. In this paper, we study the dynamical behavior of entanglement (measured by concurrence), Hilbert–Schmidt MIN and fidelity-based MIN (F-MIN) under local noisy channels such as hybrid (consists of bit flip, phase flip and bit-phase flip), generalized amplitude damping (GAD) and depolarizing channels for the initial Bell diagonal state. We observed that while sudden death of entanglement occurs in hybrid and GAD channels, MIN and F-MIN are more robust against such noises. Finally, we demonstrate the revival of MIN and F-MIN after a dark point of time against depolarizing noise.  相似文献   

20.
We demonstrate the advantages of an optical parity gate using weak cross-Kerr nonlinearities (XKNLs), quantum bus (qubus) beams, and photon number resolving (PNR) measurement through our analysis, utilizing a master equation under the decoherence effect (occurred the dephasing and photon loss). To generate Bell states, parity gates based on quantum non-demolition measurement using XKNL are extensively employed in quantum information processing. When designing a parity gate via XKNL, the parity gate can be diversely constructed according to the measurement strategies. In practice, the interactions of XKNLs in optical fiber are inevitable under the decoherence effect. Thus, by our analysis of the decoherence effect, we show that the designed parity gate employing homodyne measurement would not be expected to provide reliable quantum operation. Furthermore, compared with a parity gate using a displacement operator and PNR measurement, we conclude there is experimental benefit from implementation of a parity gate via qubus beams and PNR measurement under the decoherence effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号