首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Remote state preparation (RSP) and joint remote state preparation (JRSP) protocols for single-photon states are investigated via linear optical elements with partially entangled states. In our scheme, by choosing two-mode instances from a polarizing beam splitter, only the sender in the communication protocol needs to prepare an ancillary single-photon and operate the entanglement preparation process in order to retrieve an arbitrary single-photon state from a photon pair in partially entangled state. In the case of JRSP, i.e., a canonical model of RSP with multi-party, we consider that the information of the desired state is split into many subsets and in prior maintained by spatially separate parties. Specifically, with the assistance of a single-photon state and a three-photon entangled state, it turns out that an arbitrary single-photon state can be jointly and remotely prepared with certain probability, which is characterized by the coefficients of both the employed entangled state and the target state. Remarkably, our protocol is readily to extend to the case for RSP and JRSP of mixed states with the all optical means. Therefore, our protocol is promising for communicating among optics-based multi-node quantum networks.  相似文献   

2.
In this work, novel schemes for joint remote state preparation are presented, which involve N senders and 2 receivers as well as N senders and 3 receivers. The receivers can simultaneously reconstruct different qubit states containing the joint information from all senders. Compared with the protocols proposed by Su et al. (Int J Quantum Inf 10:1250006 (2012), the information of the prepared states in our schemes is distributed in a different way. Our protocols can be applied not only to states with real parameters but also ones with complex parameters. Moreover, the N-to-2 protocol is suitable for general qubit states besides equatorial states, and the receivers need not to perform any measurements and CNOT gates to reconstruct the states.  相似文献   

3.
We investigate the entanglement properties of the two magnon states and explicate conditions under which, the two magnon state becomes useful for several quantum communication protocols. We systematically study the temporal behaviour of concurrence to find out the effect of exchange interaction on entanglement. The two magnon state, which is potentially realizable in quantum dots using Heisenberg exchange interaction, is found to be suitable for carrying out deterministic teleportation of an arbitrary two qubit composite system. Further, conditions for which the channel capacity reaches “Holevo bound”, allowing four classical bits to be transmitted through two qubits are derived. Later, an unconventional protocol is given to demonstrate that this state can be used for sharing of a two qubit entangled state among two parties.  相似文献   

4.
We propose two deterministic remote state preparation (DRSP) schemes by using the Brown state as the entangled channel. Firstly, the remote preparation of an arbitrary two-qubit state is considered. It is worth mentioning that the construction of measurement bases plays a key role in our scheme. Then, the remote preparation of an arbitrary three-qubit state is investigated. The proposed schemes can be extended to controlled remote state preparation (CRSP) with unit success probabilities. At variance with the existing CRSP schemes via the Brown state, the derived schemes have no restriction on the coefficients, while the success probabilities can reach 100%. It means the success probabilities are greatly improved. Moreover, we pay attention to the DRSP in noisy environments under two important decoherence models, the amplitude-damping noise and phase-damping noise.  相似文献   

5.
A scheme is presented to implement bidirectional controlled quantum teleportation (QT) by using a five-qubit entangled state as a quantum channel, where Alice may transmit an arbitrary single qubit state called qubit A to Bob and at the same time, Bob may also transmit an arbitrary single qubit state called qubit B to Alice via the control of the supervisor Charlie. Based on our channel, we explicitly show how the bidirectional controlled QT protocol works. By using this bidirectional controlled teleportation, espcially, a bidirectional controlled quantum secure direct communication (QSDC) protocol, i.e., the so-called controlled quantum dialogue, is further investigated. Under the situation of insuring the security of the quantum channel, Alice (Bob) encodes a secret message directly on a sequence of qubit states and transmits them to Bob (Alice) supervised by Charlie. Especially, the qubits carrying the secret message do not need to be transmitted in quantum channel. At last, we show this QSDC scheme may be determinate and secure.  相似文献   

6.
The concatenated Greenberger–Horne–Zeilinger (C-GHZ) state is a new type of multipartite entangled state, which has potential application in future quantum information. In this paper, we propose a protocol of constructing arbitrary C-GHZ entangled state approximatively. Different from previous protocols, each logic qubit is encoded in the coherent state. This protocol is based on the linear optics, which is feasible in experimental technology. This protocol may be useful in quantum information based on the C-GHZ state.  相似文献   

7.
The usefulness of the recent experimentally realized six photon cluster state by C. Y. Lu et al. (Nature 3:91, 2007) is investigated for quantum communication protocols like quantum teleportation and quantum information splitting (QIS) and dense coding. We show that the present state can be used for the teleportation of an arbitrary two qubit state deterministically. Later, we devise two distinct protocols for the QIS of an arbitrary two qubit state among two parties. We construct sixteen orthogonal measurement basis on the cluster state, which will lock an arbitrary two qubit state among two parties. The capability of the state for dense coding is investigated and it is shown that one can send five classical bits by sending only three qubits using this state as a shared entangled resource. We finally show that this state can also be utilised in the remote state preparation of an arbitrary two qubit state.  相似文献   

8.
Along with advancement of communication systems, the demand for fault-tolerance and real-time performance for communication protocols continues to increase. Communication protocols which perform recovery from any abnormal state to a normal state are called self-stabilizing protocols. However, in these protocols, real-time recovery is not taken into consideration. This paper discusses verification of communication protocols which have self-stabilizing and timeliness properties, which are called responsive protocols.Gouda et al. proposed a mathematical method to prove whether a given protocol specification satisfies the self-stabilizing property. However, this method is not automated and does not verify the timeliness property. This paper thus proposes an automated method for verification of responsive protocols. In this method, communication protocols are modeled by extended finite state machines and their states are represented by predicates. The self-stabilizing property is proven by verifying that sequences of such states which start from an arbitrary abnormal state converge in a normal state. Also, the timeliness property is proven by verifying that the convergence is done within a priori given time.  相似文献   

9.
We introduce a general odd qubit entangled system composed of GHZ and Bell pairs and explicate its usefulness for quantum teleportation, information splitting and superdense coding. After demonstrating the superdense coding protocol on the five qubit system, we prove that ‘2N + 1’ classical bits can be sent by sending ‘N + 1’ quantum bits using this channel. It is found that the five-qubit system is also ideal for arbitrary one qubit and two qubit teleportation and quantum information splitting (QIS). For the single qubit QIS, three different protocols are feasible, whereas for the two qubit QIS, only one protocol exists. Protocols for the arbitrary N-qubit state teleportation and quantum information splitting are then illustrated.  相似文献   

10.
Multi-particle quantum state deterministic remote preparation is a fundamental and important technical branch in quantum communication. Since quantum noise is unavoidable in realistic quantum communication, it is important to analyze the effect of noise on multi-particle quantum communication protocols. In this paper, we study the effects of noise, such as amplitude damping, phase damping, bit-flip and depolarizing noises, on two deterministic remote preparation of an arbitrary three-particle state protocols, which are based on two different entangled channels, namely \(\chi \) state and Brown state. The detailed mathematical analysis shows that the output states of two deterministic remote state preparation (DRSP) protocols are the same in the same noisy environment. That is to say, in the same noisy environment, the effects of noise on two DRSP protocols are the same. This conclusion proves that these two DRSP protocols will produce the same arbitrary three-particle states in the same noise channel environment, and so that these protocols are inherently convergent and can be substituted for each other in certain circumstances. In addition, this paper also takes three-particle states \(a\left| {000} \right\rangle + b{\mathrm{e}^{ic}}\left| {111} \right\rangle \) as an example and studies the relationship between the fidelity, the target state and the size of the noise factor. The results show that if the target state can be selected, an appropriate target state can effectively resist on the bit-flip noise. If the target state cannot be selected, as the increase in the size of noise factor, the fidelities of the two DRSP schemes in the amplitude damping noise and phase damping noise are always larger than those in the bit-flip noise and depolarizing noise. This conclusion indicates that two protocols have better resistance on amplitude damping and phase damping noise than the bit-flip and depolarizing noises. These findings and analyses will provide valid help in deterministic remote preparation of an arbitrary three-particle state in a noisy environment.  相似文献   

11.
A new application of the genuinely entangled five-qubit state introduced by Brown et al. (J Phys A 38(5), 1119–1131, 2005) is investigated for quantum information splitting (QIS) of an arbitrary three-qubit state. We demonstrate that such a genuine five-qubit entangled state and a Bell-state can be used to realize the deterministic QIS of an arbitrary three-qubit state by performing the Bell-state measurements and single qubit measurement. The presented protocol is showed to be secure against certain eavesdropping attacks.  相似文献   

12.
目的是利用高维量子纠缠态为量子信道,讨论未知单粒子态的受控隐形传输问题。以三维量子纠缠态为信道,提出一个二维任意单粒子态的受控隐形传输协议。提出了以任意[d]-维量子纠缠态为量子信道,[t]-维任意单粒子态的隐形传输协议[(t相似文献   

13.
This work proposes a new dynamic quantum secret sharing (DQSS) protocol using the measurement property of Greenberger–Horne–Zeilinger state and the controlled-NOT gate. In the proposed DQSS protocol, an agent can obtain a shadow of the secret key by simply performing a measurement on single photons. In comparison with the existing DQSS protocols, it provides better qubit efficiency and has an easy way to add a new agent. The proposed protocol is also free from the eavesdropping attack, the collusion attack, and can have an honesty check on a revoked agent.  相似文献   

14.
The protocols for joint remote preparation of an arbitrary two-particle pure state from a spatially separated multi-sender to one receiver are presented in this paper. We first consider the situation of two sender and demonstrate a flexible deterministic joint remote state preparation compared with previous probabilistic schemes. And then generalize the protocol to multi-sender and show that by only adding some classical communication the success probability of preparation can be increased to four times. Finally, using a proper positive operator-valued measure instead of usual projective measurement, we present a new scheme via two non-maximally entangled states. It is shown that our schemes are generalizations of the usual standard joint remote state preparation scheme and more suitable for real experiments with requirements of only Pauli operations.  相似文献   

15.
协议状态机可以描述一个协议的行为,帮助理解协议的行为逻辑。面向文本类协议,首先利用统计学方法提取表示报文类型的语义关键字;然后利用邻接矩阵描述报文类型之间的时序关系,基于时序关系进行协议状态标注,构建出协议的状态转换图。实验表明,该方法可以正确地描述出报文类型的时序关系,抽象出准确的状态机模型。  相似文献   

16.
In this paper, we propose two authenticated quantum dialogue protocols based on three-particle entangled states, which are both completely secure and more efficient. The first controlled quantum dialogue protocol with authentication is creatively proposed, which is secure under not only some famous external attacks but also internal attacks, for example, the dishonest controller’s attack. This protocol has a slightly increasing efficiency and less qubit cost compared to previous protocols. Besides, we present the second authenticated quantum dialogue protocol, which has a high efficiency with 80% by integrating dense coding. This protocol can also resist various well-known attacks.  相似文献   

17.
This paper proposes a multi-party semi-quantum secret sharing (MSQSS) protocol which allows a quantum party (manager) to share a secret among several classical parties (agents) based on GHZ-like states. By utilizing the special properties of GHZ-like states, the proposed scheme can easily detect outside eavesdropping attacks and has the highest qubit efficiency among the existing MSQSS protocols. Then, we illustrate an efficient way to convert the proposed MSQSS protocol into a multi-party semi-quantum key distribution (MSQKD) protocol. The proposed approach is even useful to convert all the existing measure–resend type of semi-quantum secret sharing protocols into semi-quantum key distribution protocols.  相似文献   

18.
Heralded noiseless amplification is a promising method to overcome the transmission photon loss in practical noisy quantum channel and can effectively lengthen the quantum communication distance. Single-photon entanglement is an important resource in current quantum communications. Here, we construct two single-photon-assisted heralded noiseless amplification protocols for the single-photon two-mode entangled state and single-photon three-mode W state, respectively, where the single-photon qubit has an arbitrary unknown polarization feature. After the amplification, the fidelity of the single-photon entangled state can be increased, while the polarization feature of the single-photon qubit can be well remained. Both the two protocols only require the linear optical elements, so that they can be realized under current experimental condition. Our protocols may be useful in current and future quantum information processing.  相似文献   

19.
In this paper, we present an efficient scheme for remote state preparation of arbitrary n-qubit states with real coefficients. Quantum channel is composed of n maximally two-qubit entangled states, and several appropriate mutually orthogonal bases including the real parameters of prepared states are delicately constructed without the introduction of auxiliary particles. It is noted that the successful probability is 100% by using our proposal under the condition that the parameters of prepared states are all real. Compared to general states, the probability of our protocol is improved at the cost of the information reduction in the transmitted state.  相似文献   

20.
A novel rational protocol to share two arbitrary qubits among multiple parties is investigated in this paper. First, the protocol is presented, which is learned from Li et al.’s protocol. Second, the utility, security, correctness, fairness, Nash equilibrium, and Pareto optimality of our scheme are discussed in detail, where the utility, correctness, and fairness of rational quantum state sharing protocols are creatively given because the agent who recovers the state plays a different and more important role. Another important point is that assumptions about our protocol are more practical and suitable than existing protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号