共查询到20条相似文献,搜索用时 15 毫秒
1.
Giulio Gualdi Erica Costantini Marcella Reale Paolo Amerio 《International journal of molecular sciences》2021,22(9)
Wound healing is a complex, staged process. It involves extensive communication between the different cellular constituents of various compartments of the skin and its extracellular matrix (ECM). Different signaling pathways are determined by a mutual influence on each other, resulting in a dynamic and complex crosstalk. It consists of various dynamic processes including a series of overlapping phases: hemostasis, inflammation response, new tissue formation, and tissue remodeling. Interruption or deregulation of one or more of these phases may lead to non-healing (chronic) wounds. The most important factor among local and systemic exogenous factors leading to a chronic wound is infection with a biofilm presence. In the last few years, an increasing number of reports have evaluated the effects of extremely low frequency (ELF) electromagnetic fields (EMFs) on tissue repair. Each experimental result comes from a single element of this complex process. An interaction between ELF-EMFs and healing has shown to effectively modulate inflammation, protease matrix rearrangement, neo-angiogenesis, senescence, stem-cell proliferation, and epithelialization. These effects are strictly related to the time of exposure, waveform, frequency, and amplitude. In this review, we focus on the effect of ELF-EMFs on different wound healing phases. 相似文献
2.
Mast cells (MCs) are bone marrow-derived cells capable of secreting many active molecules, ranging from the mediators stored in specific granules, some of which have been known about for several decades (histamine, heparin), to small molecules produced immediately upon stimulation (membrane lipid derivatives, nitric oxide), to a host of constitutively secreted, multifunctional cytokines. With the aid of a wide array of mediators, the activated MCs control the key events of inflammation and therefore participate in the regulation of local immune response. On the basis of the structure, origin, principal subtypes, localization and function of these cells, their involvement in injury repair is therefore to be considered in acute and chronic conditions, respectively. The importance of MCs in regulating the healing processes is underscored by the proposed roles of a surplus or a deficit of their mediators in the formation of exuberant granulation tissue (such as keloids and hypertrophic scars), the delayed closure or dehiscence of wounds and the transition of acute to chronic inflammation. 相似文献
3.
Skin is innervated by a multitude of sensory nerves that are important to the function of this barrier tissue in homeostasis and injury. The role of innervation and neuromediators has been previously reviewed so here we focus on the role of the transient receptor potential cation channel, subfamily V member 1 (TRPV1) in wound healing, with the intent of targeting it in treatment of non-healing wounds. TRPV1 structure and function as well as the outcomes of TRPV1-targeted therapies utilized in several diseases and tissues are summarized. In skin, keratinocytes, sebocytes, nociceptors, and several immune cells express TRPV1, making it an attractive focus area for treating wounds. Many intrinsic and extrinsic factors confound the function and targeting of TRPV1 and may lead to adverse or off-target effects. Therefore, a better understanding of what is known about the role of TRPV1 in skin and wound healing will inform future therapies to treat impaired and chronic wounds to improve healing. 相似文献
4.
Michael Singh Serhat Akkaya Mark Preuß Franziska Rademacher Mersedeh Tohidnezhad Yusuke Kubo Peter Behrendt Jan-Tobias Weitkamp Thilo Wedel Ralph Lucius Regine Glser Jürgen Harder Andreas Bayer 《International journal of molecular sciences》2022,23(5)
Platelet-released growth factors (PRGFs) or other thrombocyte concentrate products, e.g., Platelet-Rich Fibrin (PRF), have become efficient tools of regenerative medicine in many medical disciplines. In the context of wound healing, it has been demonstrated that treatment of chronic or complicated wounds with PRGF or PRF improves wound healing in the majority of treated patients. Nevertheless, the underlying cellular and molecular mechanism are still poorly understood. Therefore, we aimed to analyze if PRGF-treatment of human keratinocytes caused the induction of genes encoding paracrine factors associated with successful wound healing. The investigated genes were Semaphorin 7A (SEMA7A), Angiopoietin-like 4 (ANGPLT4), Fibroblast Growth Factor-2 (FGF-2), Interleukin-32 (IL-32), the CC-chemokine-ligand 20 (CCL20), the matrix-metalloproteinase-2 (MMP-2), the chemokine C-X-C motif chemokine ligand 10 (CXCL10) and the subunit B of the Platelet-Derived Growth Factor (PDGFB). We observed a significant gene induction of SEMA7A, ANGPLT4, FGF-2, IL-32, MMP-2 and PDGFB in human keratinocytes after PRGF treatment. The CCL20- and CXCL10 gene expressions were significantly inhibited by PRGF therapy. Signal transduction analyses revealed that the PRGF-mediated gene induction of SEMA7A, ANGPLT4, IL-32 and MMP-2 in human keratinocytes was transduced via the IL-6 receptor pathway. In contrast, EGF receptor signaling was not involved in the PRGF-mediated gene expression of analyzed genes in human keratinocytes. Additionally, treatment of ex vivo skin explants with PRGF confirmed a significant gene induction of SEMA7A, ANGPLT4, MMP-2 and PDGFB. Taken together, these results describe a new mechanism that could be responsible for the beneficial wound healing properties of PRGF or related thrombocytes concentrate products such as PRF. 相似文献
5.
The healing of skin wounds involves the activation and recruitment of various immune cell types, many of which are believed to contribute significantly to different aspects of the repair process. Roles for immune cells have been described in practically all stages of wound healing, including hemostasis, inflammation, proliferation and scar formation/remodeling. Over the last decade, tools to deplete immune cell populations in animal models have become more advanced, leading to a surge in the number of studies examining the function of specific immune cell types in skin repair. In this review, we will summarize what is known about distinct immune cell types in cutaneous wound healing, with an emphasis on data from animal studies in which specific cell types have been targeted. 相似文献
6.
Wound healing is a highly coordinated process which leads to the repair and regeneration of damaged tissue. Still, numerous diseases such as diabetes, venous insufficiencies or autoimmune diseases could disturb proper wound healing and lead to chronic and non-healing wounds, which are still a great challenge for medicine. For many years, research has been carried out on finding new therapeutics which improve the healing of chronic wounds. One of the most extensively studied active substances that has been widely tested in the treatment of different types of wounds was Substance P (SP). SP is one of the main neuropeptides released by nervous fibers in responses to injury. This review provides a thorough overview of the application of SP in different types of wound models and assesses its efficacy in wound healing. 相似文献
7.
Xuelai Liu Dr. Pui‐yan Lee Dr. Chi‐ming Ho Dr. Vincent C. H. Lui Dr. Yan Chen Dr. Chi‐ming Che Prof. Paul K. H. Tam Prof. Kenneth K. Y. Wong Dr. 《ChemMedChem》2010,5(3):468-475
With advances in nanotechnology, pure silver has been recently engineered into nanometer‐sized particles (diameter <100 nm) for use in the treatment of wounds. In conjunction with other studies, we previously demonstrated that the topical application of silver nanoparticles (AgNPs) can promote wound healing through the modulation of cytokines. Nonetheless, the question as to whether AgNPs can affect various skin cell types—keratinocytes and fibroblasts—during the wound‐healing process still remains. Therefore, the aim of this study was to focus on the cellular response and events of dermal contraction and epidermal re‐epithelialization during wound healing under the influence of AgNPs; for this we used a full‐thickness excisional wound model in mice. The wounds were treated with either AgNPs or control with silver sulfadiazine, and the proliferation and biological events of keratinocytes and fibroblasts during healing were studied. Our results confirm that AgNPs can increase the rate of wound closure. On one hand, this was achieved through the promotion of proliferation and migration of keratinocytes. On the other hand, AgNPs can drive the differentiation of fibroblasts into myofibroblasts, thereby promoting wound contraction. These findings further extend our current knowledge of AgNPs in biological and cellular events and also have significant implications for the treatment of wounds in the clinical setting. 相似文献
8.
Magdalena Misiura Weronika Baszanowska Ilona Ociowska Jerzy Paka Wojciech Miltyk 《International journal of molecular sciences》2020,21(23)
Recent reports have indicated prolidase (PEPD) as a ligand of the epidermal growth factor receptor (EGFR). Since this receptor is involved in the promotion of cell proliferation, growth, and migration, we aimed to investigate whether prolidase may participate in wound healing in vitro. All experiments were performed in prolidase-treated human keratinocytes assessing cell vitality, proliferation, and migration. The expression of downstream signaling proteins induced by EGFR, insulin-like growth factor 1 (IGF-1), transforming growth factor β1 (TGF-β1), and β1-integrin receptors were evaluated by Western immunoblotting and immunocytochemical staining. To determine collagen biosynthesis and prolidase activity radiometric and colorimetric methods were used, respectively. Proline content was determined by applying the liquid chromatography coupled with mass spectrometry. We found that prolidase promoted the proliferation and migration of keratinocytes through stimulation of EGFR-downstream signaling pathways in which the PI3K/Akt/mTOR axis was involved. Moreover, PEPD upregulated the expression of β1-integrin and IGF-1 receptors and their downstream proteins. Proline concentration and collagen biosynthesis were increased in HaCaT cells under prolidase treatment. Since extracellular prolidase as a ligand of EGFR induced cell growth, migration, and collagen biosynthesis in keratinocytes, it may represent a potential therapeutic approach for the treatment of skin wounds. 相似文献
9.
Erica Costantini Lisa Aielli Federica Serra Lorenzo De Dominicis Katia Falasca Pamela Di Giovanni Marcella Reale 《International journal of molecular sciences》2022,23(4)
Wound healing (WH) proceeds through four distinct phases: hemostasis, inflammation, proliferation, and remodeling. Impaired WH may be the consequence of the alteration of one of these phases and represents a significant health and economic burden to millions of individuals. Thus, new therapeutic strategies are the topics of intense research worldwide. Although radiofrequency electromagnetic field (RF-EMF) has many medical applications in rehabilitation, pain associated with musculoskeletal disorders, and degenerative joint disorders, its impact on WH is not fully understood. The process of WH begins just after injury and continues during the inflammatory and proliferative phases. A thorough understanding of the mechanisms by which RF-EMF can improve WH is required before it can be used as a non-invasive, inexpensive, and easily self-applicable therapeutic strategy. Thus, the aim of this study is to explore the therapeutic potential of different exposure setups of RF-EMF to drive faster healing, evaluating the keratinocytes migration, cytokines, and matrix metalloproteinases (MMPs) expression. The results showed that RF-EMF treatment promotes keratinocytes’ migration and regulates the expression of genes involved in healing, such as MMPs, tissue inhibitors of metalloproteinases, and pro/anti-inflammatory cytokines, to improve WH. 相似文献
10.
Beata Kaczmarek-Szczepaska Justyna Ostrowska Justyna Kozowska Zofia Szota Anna A. Broyna Rita Dreier Russel J. Reiter Andrzej T. Slominski Kerstin Steinbrink Konrad Kleszczyski 《International journal of molecular sciences》2021,22(11)
The development of scaffolds mimicking the extracellular matrix containing bioactive substances has great potential in tissue engineering and wound healing applications. This study investigates melatonin—a methoxyindole present in almost all biological systems. Melatonin is a bioregulator in terms of its potential clinical importance for future therapies of cutaneous diseases. Mammalian skin is not only a prominent melatonin target, but also produces and rapidly metabolizes the multifunctional methoxyindole to biologically active metabolites. In our methodology, chitosan/collagen (CTS/Coll)-contained biomaterials are blended with melatonin at different doses to fabricate biomimetic hybrid scaffolds. We use rat tail tendon- and Salmo salar fish skin-derived collagens to assess biophysical and cellular properties by (i) Fourier transform infrared spectroscopy—attenuated total reflectance (FTIR–ATR), (ii) thermogravimetric analysis (TG), (iii) scanning electron microscope (SEM), and (iv) proliferation ratio of cutaneous cells in vitro. Our results indicate that melatonin itself does not negatively affect biophysical properties of melatonin-immobilized hybrid scaffolds, but it induces a pronounced elevation of cell viability within human epidermal keratinocytes (NHEK), dermal fibroblasts (NHDF), and reference melanoma cells. These results demonstrate that this indoleamine accelerates re-epithelialization. This delivery is a promising technique for additional explorations in future dermatotherapy and protective skin medicine. 相似文献
11.
Samuela Cataldi Maria Rachele Ceccarini Federica Patria Tommaso Beccari Martina Mandarano Ivana Ferri Andrea Lazzarini Francesco Curcio Elisabetta Albi 《International journal of molecular sciences》2022,23(3)
Vitamin D3, known to regulate bone homeostasis, has recently been shown to have many pleiotropic effects in different tissues and organs due to the presence of its receptor in a wide range of cells. Our previous study demonstrated that vitamin D3 was able to increase the wound healing respect to the control sample, 24 h after cutting, without however leading to a complete repair. The aim of the study was to combine vitamin D3 with silver nanoparticles to possibly enable a faster reparative effect. The results showed that this association was capable of inducing a complete wound healing only after 18 h. Moreover, a treatment of vitamin D3 + silver nanoparticles yielded a small percentage of keratinocytes vimentin-positive, suggesting the possibility that the treatment was responsible for epithelial to mesenchymal transition of the cells, facilitating wound healing repair. Since vitamin D3 acts via sphingolipid metabolism, we studied the expression of gene encoding for the metabolic enzymes and protein level. We found an increase in neutral sphingomyelinase without involvement of neutral ceramidase or sphingosine kinase2. In support, an increase in ceramide level was identified by Ultrafast Liquid Chromatography–Tandem Mass Spectrometry, suggesting a possible involvement of ceramides in wound healing process. 相似文献
12.
Joanna Winiewska Magda Syszewska Karolina Staanowska Katarzyna Walendzik Marta Kopcewicz Sylwia Machciska Barbara Gawroska-Kozak 《International journal of molecular sciences》2021,22(11)
The primary mechanism by which adipose-derived stem cells (ASCs) exert their reparative or regenerative potential relies predominantly on paracrine action. Secretory abilities of ASCs have been found to be amplified by hypoxia pre-conditioning. This study investigates the impact of hypoxia (1% O2) on the secretome composition of pig ASCs (pASCs) and explores the effect of pASCs’ conditioned media (CM) on skin cell functions in vitro and the expression of markers attributed to wound healing. Exposure of pASCs to hypoxia increased levels of vascular endothelial growth factor (VEGF) in CM-Hyp compared to CM collected from the cells cultured in normoxia (CM-Nor). CM-Hyp promoted the migratory ability of pig keratinocytes (pKERs) and delayed migration of pig dermal fibroblasts (pDFs). Exposure of pKERs to either CM-Nor or CM-Hyp decreased the levels of pro-fibrotic indicators WNT10A and WNT11. Furthermore, CM-Hyp enhanced the expression of KRT14, the marker of the basal epidermis layer. In contrast, CM-Nor showed a stronger effect on pDFs manifested by increases in TGFB1, COL1A1, COL3A1, and FN1 mRNA expression. The formation of three-dimensional endothelial cell networks was improved in the presence of CM-Hyp. Overall, our results demonstrate that the paracrine activity of pASCs affects skin cells, and this property might be used to modulate wound healing. 相似文献
13.
Jingbo Zhang Xiang Qu Junjun Li Akima Harada Ying Hua Noriko Yoshida Masako Ishida Yoshiki Sawa Li Liu Shigeru Miyagawa 《International journal of molecular sciences》2022,23(20)
Diabetic foot ulceration is a common chronic diabetic complication. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) have been widely used in regenerative medicine owing to their multipotency and easy availability. We developed poly(lactic-co-glycolic acid) (PLGA)-based scaffold to create hUC-MSC tissue sheets. In vitro immunostaining showed that hUC-MSC tissue sheets formed thick and solid tissue sheets with an abundance of extracellular matrix (ECM). Diabetic wounds in mice treated with or without either the hUC-MSC tissue sheet, hUC-MSC injection, or fiber only revealed that hUC-MSC tissue sheet transplantation promoted diabetic wound healing with improved re-epithelialization, collagen deposition, blood vessel formation and maturation, and alleviated inflammation compared to that observed in other groups. Taken collectively, our findings suggest that hUC-MSCs cultured on PLGA scaffolds improve diabetic wound healing, collagen deposition, and angiogenesis, and provide a novel and effective method for cell transplantation, and a promising alternative for diabetic skin wound treatment. 相似文献
14.
15.
Boaz Adani Eli Sapir Evgenia Volinsky Astar Lazmi-Hailu Raphael Gorodetsky 《International journal of molecular sciences》2022,23(21)
Skin exposure to high-dose irradiation, as commonly practiced in radiotherapy, affects the different skin layers, causing dry and wet desquamation, hyperkeratosis fibrosis, hard to heal wounds and alopecia and damaged hair follicles. Fetal tissue mesenchymal stromal cells (f-hPSC) were isolated from excised human fetal placental tissue, based on their direct migration from the tissue samples to the tissue dish. The current study follows earlier reports on for the mitigation of acute radiation syndrome following whole body high-dose exposure with remotely injected f-hPSC. Both the head only and a back skin flap of mice were irradiated with 16 &18 Gy, respectively, by 6MeV clinical linear accelerator electron beam. In both locations, the irradiated skin areas developed early and late radiation induced skin damages, including cutaneous fibrosis, lesions, scaring and severe hair follicle loss and reduced hair pigmentation. Injection of 2 × 106 f-hPSC, 3 and 8 weeks following 16 Gy head irradiation, and 1 and 4 weeks following the 18 Gy back skin only irradiation, resulted in significantly faster healing of radiation induced damages, with reduction of wet desquamation as measured by surface moisture level and minor recovery of the skin viscoelasticity. Detailed histological morphometry showed a clear alleviation of radiation induced hyperkeratosis in f-hPSC treated mice, with significant regain of hair follicles density. Following 16 Gy head irradiation, the hair follicles density in the scalp skin was reduced significantly by almost a half relative to the controls. A nearly full recovery of hair density was found in the f-hPSC treated mice. In the 18 Gy irradiated back skin, the hair follicles density dropped in a late stage by ~70% relative to naïve controls. In irradiated f-hPSC treated mice, it was reduced by only ~30% and was significantly higher than the non-treated group. Our results suggest that local injections of xenogeneic f-hPSC could serve as a simple, safe and highly effective non-autologous pro-regenerative treatment for high-dose radiation induced skin insults. We expect that such treatment could also be applied for other irradiated organs. 相似文献
16.
Hantae Jo Sofia Brito Byeong Mun Kwak Sangkyu Park Mi-Gi Lee Bum-Ho Bin 《International journal of molecular sciences》2021,22(5)
Mesenchymal stem cells (MSCs) are multipotent stem cells derived from adult stem cells. Primary MSCs can be obtained from diverse sources, including bone marrow, adipose tissue, and umbilical cord blood. Recently, MSCs have been recognized as therapeutic agents for skin regeneration and rejuvenation. The skin can be damaged by wounds, caused by cutting or breaking of the tissue, and burns. Moreover, skin aging is a process that occurs naturally but can be worsened by environmental pollution, exposure to ultraviolet radiation, alcohol consumption, tobacco use, and undernourishment. MSCs have healing capacities that can be applied in damaged and aged skin. In skin regeneration, MSCs increase cell proliferation and neovascularization, and decrease inflammation in skin injury lesions. In skin rejuvenation, MSCs lead to production of collagen and elastic fibers, inhibition of metalloproteinase activation, and promote protection from ultraviolet radiation-induced senescence. In this review, we focus on how MSCs and MSC-derived molecules improve diseased and aged skin. Additionally, we emphasize that induced pluripotent stem cell (iPSC)-derived MSCs are potentially advanced MSCs, which are suitable for cell therapy. 相似文献
17.
Tery Yun Soeun Shin Kyungwon Bang Mugeun Lee Jung-Ah Cho Myungin Baek 《International journal of molecular sciences》2021,22(15)
The skin is a barrier between the body and the environment that protects the integrity of the body and houses a vast microbiota. By interacting with the host immune system, the microbiota improves wound healing in mammals. However, in fish, the evidence of the role of microbiota and the type of species on wound healing is scarce. We aimed to examine the wound healing rate in various fish species and evaluate the effect of antibiotics on the wound healing process. The wound healing rate was much faster in two of the seven fish species selected based on habitat and skin types. We also demonstrated that the composition of the microbiome plays a role in the wound healing rate. After antibiotic treatment, the wound healing rate improved in one species. Through 16S rRNA sequencing, we identified microbiome correlates of varying responses on wound healing after antibiotic treatment. These findings indicate that not only the species difference but also the microbiota play a significant role in wound healing in fish. 相似文献
18.
Aurlie Marches Emily Clement Graldine Albrola Marie-Pierre Rols Sarah Cousty Michel Simon Nofel Merbahi 《International journal of molecular sciences》2022,23(18)
Cold Atmospheric Plasma (CAP) is an emerging technology with great potential for biomedical applications such as sterilizing equipment and antitumor strategies. CAP has also been shown to improve skin wound healing in vivo, but the biological mechanisms involved are not well known. Our study assessed a possible effect of a direct helium jet CAP treatment on keratinocytes, in both the immortalized N/TERT-1 human cell line and primary keratinocytes obtained from human skin samples. The cells were covered with 200 µL of phosphate buffered saline and exposed to the helium plasma jet for 10–120 s. In our experimental conditions, micromolar concentrations of hydrogen peroxide, nitrite and nitrate were produced. We showed that long-time CAP treatments (≥60 s) were cytotoxic, reduced keratinocyte migration, upregulated the expression of heat shock protein 27 (HSP27) and induced oxidative cell stress. In contrast, short-term CAP treatments (<60 s) were not cytotoxic, did not affect keratinocyte proliferation and differentiation, and did not induce any changes in mitochondria, but they did accelerate wound closure in vitro by improving keratinocyte migration. In conclusion, these results suggest that helium-based CAP treatments improve wound healing by stimulating keratinocyte migration. The study confirms that CAP could be a novel therapeutic method to treat recalcitrant wounds. 相似文献
19.
Thayaalini Subramaniam Mh Busra Fauzi Yogeswaran Lokanathan Jia Xian Law 《International journal of molecular sciences》2021,22(12)
Skin injury is quite common, and the wound healing is a complex process involving many types of cells, the extracellular matrix, and soluble mediators. Cell differentiation, migration, and proliferation are essential in restoring the integrity of the injured tissue. Despite the advances in science and technology, we have yet to find the ideal dressing that can support the healing of cutaneous wounds effectively, particularly for difficult-to-heal chronic wounds such as diabetic foot ulcers, bed sores, and venous ulcers. Hence, there is a need to identify and incorporate new ideas and methods to design a more effective dressing that not only can expedite wound healing but also can reduce scarring. Calcium has been identified to influence the wound healing process. This review explores the functions and roles of calcium in skin regeneration and reconstruction during would healing. Furthermore, this review also investigates the possibility of incorporating calcium into scaffolds and examines how it modulates cutaneous wound healing. In summary, the preliminary findings are promising. However, some challenges remain to be addressed before calcium can be used for cutaneous wound healing in clinical settings. 相似文献
20.
Zi Kuang Moay Luong T. H. Nguyen Pietradewi Hartrianti Declan P. Lunny David Leavesley Yee Onn Kok Si Jack Chong Alvin Wen Choong Chua Shang-Ian Tee Kee Woei Ng 《International journal of molecular sciences》2021,22(16)
Deep partial-thickness burns damage most of the dermis and can cause severe pain, scarring, and mortality if left untreated. This study serves to evaluate the effectiveness of crosslinked keratin–alginate composite sponges as dermal substitutes for deep partial-thickness burns. Crosslinked keratin–alginate sponges were tested for the ability to support human dermal fibroblasts in vitro and to support the closure and healing of partial-thickness burn wounds in Sus scrofa pigs. Keratin–alginate composite sponges supported the enhanced proliferation of human dermal fibroblasts compared to alginate-only sponges and exhibited decreased contraction in vitro when compared to keratin only sponges. As dermal substitutes in vivo, the sponges supported the expression of keratin 14, alpha-smooth muscle actin, and collagen IV within wound sites, comparable to collagen sponges. Keratin–alginate composite sponges supported the regeneration of basement membranes in the wounds more than in collagen-treated wounds and non-grafted controls, suggesting the subsequent development of pathological scar tissues may be minimized. Results from this study indicate that crosslinked keratin–alginate sponges are suitable alternative dermal substitutes for clinical applications in wound healing and skin regeneration. 相似文献