首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CD3gamma and CD3delta are the most closely related CD3 components, both of which participate in the TCRalphabeta-CD3 complex expressed on mature T cells. Interestingly, however, CD3delta does not appear to participate functionally in the pre-T-cell receptor (TCR) complex that is expressed on immature T cells: disruption of CD3delta gene expression has no effect on the developmental steps controlled by the pre-TCR. Here we report that in contrast with CD3delta, CD3gamma is an essential component of the pre-TCR. We generated mice selectively lacking expression of CD3gamma, in which expression of CD3delta, CD3epsilon, CD3zeta, pTalpha and TCRbeta remained undisturbed. Thus, all components for composing a pre-TCR are available, with the exception of CD3gamma. Nevertheless, T-cell development is severely inhibited in CD3gamma-deficient mice. The number of cells in the thymus is reduced to <1% of that in normal mice, and the large majority of thymocytes lack CD4 and CD8 and are arrested at the CD44-CD25+ double negative (DN) stage of development. Peripheral lymphoid organs are also practically devoid of T cells, with absolute numbers of peripheral T cells reduced to only 2-5% of those in normal mice. Both TCRalphabeta and TCRgammadelta lineages fail to develop effectively in CD3gamma-deficient mice, although absence of CD3gamma has no effect on gene rearrangements of the TCRbeta, delta and gamma loci. Furthermore, absence of CD3gamma results in a severe reduction in the level of TCR and CD3epsilon expression at the cell surface of thymocytes and peripheral T cells. The defect in the DN to double positive transition in mice lacking CD3gamma can be overcome by anti-CD3epsilon-mediated cross-linking. CD3gamma is thus essential for pre-TCR function.  相似文献   

2.
T cell antigen receptor (TCR) and pre-TCR complexes are composed of clonotypic heterodimers in association with dimers of signal transducing invariant subunits (CD3gamma, -delta, -epsilon, and zeta). The role of individual invariant subunits in T cell development has been investigated by generating gene-specific mutations in mice. Mutation of CD3gamma, -delta, or zeta results in an incomplete block in development, characterized by reduced numbers of mature T cells that express low levels of TCR. In contrast, mature T cells are absent from CD3epsilon-/- mice, and thymocyte development is arrested at the early CD4(-)CD8(-) stage. Although these results suggest that CD3epsilon is essential for pre-TCR and TCR expression/function, their interpretation is complicated by the fact that expression of the CD3gamma and CD3delta genes also is reduced in CD3epsilon-/- mice. Thus, it is unclear whether the phenotype of CD3epsilon-/- mice reflects the collective effects of CD3gamma, -delta, and -epsilon deficiency. By removing the selectable marker (PGK-NEO) from the targeted CD3epsilon gene via Cre/loxP-mediated recombination, we generated mice that lack CD3epsilon yet retain normal expression of the closely linked CD3gamma and CD3delta genes. These (CD3epsilonDelta/Delta) mice exhibited an early arrest in T cell development, similar to that of CD3epsilon-/- mice. Moreover, the developmental defect could be rescued by expression of a CD3epsilon transgene. These results identify an essential role for CD3epsilon in T cell development not shared by the CD3gamma, CD3delta, or zeta-family proteins and provide further evidence that PGK-NEO can influence the expression of genes in its proximity.  相似文献   

3.
The CD3 complex found associated with the T cell receptor (TCR) is essential for signal transduction following TCR engagement. During T cell development, TCR-mediated signalling promotes the transition from one developmental stage to the next and controls whether a thymocyte undergoes positive or negative selection. The roles of particular CD3 components in these events remain unclear. Indeed, it is unknown whether they have specialized or overlapping roles. However, the multiplicity of CD3 components and their evolutionary conservation suggest that they serve distinct functions. Here the developmental requirement for the CD3 delta chain is analyzed by generating a mouse line specifically lacking this component (delta-/- mice). Strikingly, CD3 delta is shown to be differentially required during development. In particular, CD3 delta is not needed for steps in development mediated by pre-TCR or gamma delta TCR, but is required for further development of thymocytes expressing alpha beta TCR. Absence of CD3 delta specifically blocks the thymic selection processes that mediate the transition from the double-positive to single-positive stages of development.  相似文献   

4.
T cells belong to two separate lineages based on surface expression of alpha beta or gamma delta T cell receptors (TCR). Since during thymus development TCR beta, gamma, and delta genes rearrange before alpha genes, and gamma delta cells appear earlier than alpha beta cells, it has been assumed that gamma delta cells are devoid of TCR alpha rearrangements. We show here that this is not the case, since mature adult, but not fetal, thymic gamma delta cells undergo VJ alpha rearrangements more frequently than immature alpha beta lineage thymic precursors. Sequence analysis shows VJ alpha rearrangements in gamma delta cells to be mostly (70%) nonproductive. Furthermore, VJ alpha rearrangements in gamma delta cells are transcribed normally and, as shown by analysis of TCR beta-/- mice, occur independently of productive VDJ beta rearrangements. These data are interpreted in the context of a model in which precursors of alpha beta and gamma delta cells differ in their ability to express a functional pre-TCR complex.  相似文献   

5.
The TCR-associated CD3 complex consists of four subunits, i.e. CD3 gamma, delta, epsilon and zeta, which are expressed very early in T cell development prior to the expression of the TCR and the pre-TCR alpha chain. It is unclear whether the expression of each CD3 protein is independent of, or is influenced by, other CD3 subunits. To study whether CD3 epsilon regulates expression of CD3 gamma and delta genes, we generated a strain of CD3 epsilon-deficient mice termed CD3 epsilon(delta P/delta P) (epsilon(delta P)), in which the promoter of CD3E was disrupted, and subsequently reconstituted these mice with a CD3 epsilon transgene. In the epsilon(delta P) mice, T cell development is arrested at the double-negative stage and targeting the CD3 epsilon gene caused severe inhibition of CD3 gamma and delta gene expression. Introduction of the CD3 epsilon transgene did not restore CD3 gamma and delta expression. However, a very small fraction of prothymocytes that expressed CD3 gamma and delta was rescued upon reconstitution of the CD3 epsilon transgene. Remarkably, this rescue led to a very efficient differentiation and maturation of thymocytes, resulting in a significant T cell population in the periphery. These results demonstrate that CD3 epsilon does not regulate expression of CD3 gamma and delta genes, and underscore the capacity of each prothymocyte to give rise to a large number of mature peripheral T cells.  相似文献   

6.
IL-7-deficient (IL-7(-/-)) mice have reduced numbers of B and TCR alpha beta cells, but lack mature TCR gamma delta cells. Although most T cell development occurs in the thymus, some intestinal intraepithelial lymphocytes (IEL), including TCR gamma delta cells, can develop extrathymically. Epithelial cells in both thymus and intestine synthesize IL-7, suggesting that TCR gamma delta cell development could occur in either site. To evaluate the role of thymic IL-7 in development of TCR gamma delta cells, newborn TCR beta-deficient (TCR beta(-/-)) thymi were grafted to IL-7(-/-) mice. Donor- and host-derived TCR gamma delta cells were recovered from thymus grafts, spleen, and IEL. However, when IL-7(-/-) thymi were grafted to TCR beta(-/-) mice, no development of graft-derived TCR gamma delta cells occurred, indicating that extrathymic IL-7 did not support TCR gamma delta IEL generation from newborn thymic precursors. In contrast, TCR gamma delta IEL development occurred efficiently in adult, thymectomized, irradiated C57BL/6J mice reconstituted with IL-7(-/-) bone marrow. This demonstrated that extrathymic development of TCR gamma delta IEL required extrathymic IL-7 production. Thus, intrathymic IL-7 was required for development of thymic TCR gamma delta cells, while peripheral IL-7 was sufficient for development of extrathymic TCR gamma delta IEL.  相似文献   

7.
IL-7 is a keratinocyte-derived lymphocyte growth factor critical for the development of gammadelta T cells including murine dendritic epidermal T cells (DETC). We derived transgenic mice that overexpress IL-7 in basal keratinocytes under the control of the human K14 promoter. These K14/IL-7 mice develop dermal and epidermal T cell infiltrates associated with alopecia. This lymphoproliferative skin disease is substantially more severe in mice homozygous for the K14/IL-7 transgene. Conventional DETC expressing a Vgamma5 Vdelta1 TCR are rare or absent among the cutaneous T cells in these mice. The T cells in the skin infiltrates of young K14/IL-7 mice are predominantly gammadelta T cells that express intermediate levels of TCR, are negative for E-cadherin, often lack expression of CD2, and include cells that coexpress NK1.1. T cells expressing intermediate levels of a TCR-alphabeta are also present in transgenic skin, and progressively increase in number as the mice age. Phenotypically similar intermediate gammadelta and alphabeta T cell subsets also constitute the major lymphocyte populations recovered from organ culture of normal mouse skin in the presence of IL-7, suggesting that the T cells that accumulate in the epidermis of K14/IL-7 mice are derived from precursors normally resident in skin. We conclude that intermediate TCR cells, some of which coexpress NK1.1, can be selectively expanded in skin under the influence of IL-7 produced locally. Our results also suggest that features of the epidermal microenvironment besides keratinocyte-derived IL-7 account for the normal predominance of Vgamma5 Vdelta1 DETC in mouse epidermis.  相似文献   

8.
The zeta family includes zeta, eta, and FcepsilonRIgamma (Fcgamma). Dimers of the zeta family proteins function as signal transducing subunits of the T cell antigen receptor (TCR), the pre-TCR, and a subset of Fc receptors. In mice lacking zeta/eta chains, T cell development is impaired, yet low numbers of CD4+ and CD8+ T cells develop. This finding suggests either that pre-TCR and TCR complexes lacking a zeta family dimer can promote T cell maturation, or that in the absence of zeta/eta, Fcgamma serves as a subunit in TCR complexes. To elucidate the role of zeta family dimers in T cell development, we generated mice lacking expression of all of these proteins and compared their phenotype to mice lacking only zeta/eta or Fcgamma. The data reveal that surface complexes that are expressed in the absence of zeta family dimers are capable of transducing signals required for alpha/beta-T cell development. Strikingly, T cells generated in both zeta/eta-/- and zeta/eta-/--Fcgamma-/- mice exhibit a memory phenotype and elaborate interferon gamma. Finally, examination of different T cell populations reveals that zeta/eta and Fcgamma have distinct expression patterns that correlate with their thymus dependency. A possible function for the differential expression of zeta family proteins may be to impart distinctive signaling properties to TCR complexes expressed on specific T cell populations.  相似文献   

9.
The accumulation of various T cell subsets in Bcg-susceptible (C57BL/6) and- resistant (C3H/HeN) strains of mice were compared following an intraperitoneal infection with Mycobacterium paratuberculosis. Groups of mice from both strains were killed at 3, 5, 10, 15, 30, and 150 days after infection and lymphocytes were harvested from the peritoneal exudate cells (PEC), spleen, intestinal epithelial lymphocytes (IEL), lamina propria lymphocytes (LPL), Peyer's patches, and mesenteric lymph node (MLN) and labelled with monoclonal antibodies to CD3, CD4, CD8, gamma delta TCR, CD25, and CD44 for flow cytometric analysis. Uninfected C3H/HeN mice had higher proportions of CD4+ cells in the spleen, MLN, LPL, IEL, and Peyer's patches, while uninfected C57BL/6 mice had higher proportions of CD8+ and/or gamma delta T cells. Significant increases in accumulation of CD8+ and gamma delta T cells were detected in the peritoneum and other tissues in both strains of mice after infection. Higher CD4/CD8 ratios were observed in most lymphoid tissues of C3H/HeN mice, while increased proportions of CD8+ and/or gamma delta T cells were present in C57BL/6 mice. These results indicate that significant differences in T cell profiles exist between these two strains of mice, both inherently and in response to infection with M. paratuberculosis. Innately lower levels of CD4+ cells and/or higher percentages of CD8+ and gamma delta T cells may play a role in the increased suspectibility of C57BL/6 mice to infection with M. paratuberculosis.  相似文献   

10.
The generation of a productive "in-frame" T cell receptor beta (TCR beta), immunoglobulin (Ig) heavy (H) or Ig light (L) chain variable region gene can result in the cessation of rearrangement of the alternate allele, a process referred to as allelic exclusion. This process ensures that most alphabeta T cells express a single TCR beta chain and most B cells express single IgH and IgL chains. Assembly of TCR alpha and TCR gamma chain variable region genes exhibit allelic inclusion and alphabeta and gammadelta T cells can express two TCR alpha or TCR gamma chains, respectively. However, it was not known whether assembly of TCR delta variable regions genes is regulated in the context of allelic exclusion. To address this issue, we have analyzed TCR delta rearrangements in a panel of mouse splenic gammadelta T cell hybridomas. We find that, similar to TCR alpha and gamma variable region genes, assembly of TCR delta variable region genes exhibits properties of allelic inclusion. These findings are discussed in the context of gammadelta T cell development and regulation of rearrangement of TCR delta genes.  相似文献   

11.
We describe the development and function of the peripheral lymphoid system of mutant mice rendered deficient in either alpha beta or gamma delta T cells via targeting of TCR genes in embryonic stem cells. In the spleen of alpha beta T cell-deficient mice, gamma delta T cells do not compensate in numbers for the lack of alpha beta T cells, but B cells do. alpha beta T cell-deficient mice are unable to mount an antibody response to ovalbumin and do not reject skin allografts. Natural killer cell function is not impaired in any of the mutant mice. TCR mutant mice will prove useful in dissecting differential functions of alpha beta and gamma delta T cells in vivo.  相似文献   

12.
Over-expression of human or mouse CD3-epsilon transgenes profoundly disturbs T lymphocyte and natural killer (NK) cell development. One of these transgenic strains, termed tgepsilon26, displays a very early block in T lymphocyte and NK cell development. We showed previously that the absence of early thymocyte progenitors results in an abnormal thymic microenvironment. Due to this thymic defect, T cell development could not be restored by bone marrow (BM) transplantation in adult tgepsilon26 mice but could in fetal tgepsilon26 mice. Here we examine the effect of this abnormal thymic environment on NK cell development. We demonstrate that NK cell maturation in tgepsilon26 mice was reconstituted by BM derived from completely T cell-deficient mice, i.e. RAG-2(-/-) and TCRbeta x delta-/-, but not from wild-type mice. Moreover, tgepsilon26 mice transplanted with BM from partially T cell-deficient mice, i.e. TCRalpha-/-, TCRbeta-/- and TCRdelta-/- mice, did not reconstitute their NK cell compartment. We conclude from these studies that the thymic environment is not required for NK cell development, but that aberrantly educated alphabeta or gammadelta T lymphocytes can influence NK cell ontogeny. Furthermore, high serum levels of tumor necrosis factor (TNF) were detected in the vast majority of tgepsilon26 mice transplanted with BM cells derived from partially T cell-deficient mice, but never from tgepsilon26 mice transplanted with BM cells derived from completely T cell-deficient mice. The high levels of TNF may play an important role in the observed inhibition of NK cell development, since in vivo treatment with an anti-TNF antibody restored NK cell development.  相似文献   

13.
14.
Thymic development of T lymphocytes progresses as a consequence of both TCR-mediated and non-TCR-mediated interactions between thymocytes and stromal cells. As relB-deficient mice appear to lack thymic medullary epithelium and mature dendritic cells, we studied the effect of this "cortex-only" thymus on T cell development. Two major consequences were observed. First, in both relB mutant and TCR transgenic/relB mutant mice, positive selection of both TCR alpha beta and delta gamma T cells appeared to proceed normally, with export of fully functional T cells to the periphery, suggesting that the thymic medullary stromal cells are not required for full maturation of T cells nor is an organized medullary compartment required for accumulation of mature single positive CD4 and CD8 T cells. Second, thymic negative selection was impaired, as evidenced by significant autoreactive proliferative responses to normal spleen stimulators. Peripheral T cells in relB mutant mice showed an unusually high proportion of CD69+ and CD44high cells. While some of these cells may be autoreactive T cells, most of the cells appeared to be activated by cytokines produced by relB mutant nonlymphoid cells, as the effect is minimized in relB mutant bone marrow chimeras. In sum, while the TCR-mediated steps in T cell maturation require both thymic cortex and medulla (epithelium and dendritic cells) for normal positive and negative selection of the repertoire, non-TCR-mediated interactions in the thymic cortex alone are sufficient to generate mature functional T cells.  相似文献   

15.
16.
To assess the gamma delta TCR T cells in the control of the timing of the mucosal response to enteric parasitic infections, we used C57BL mice, orally infected with 200 viable T. spiralis larvae. The small intestine, spleens and Peyer's patches (PP) were excised on 1, 4, 7, 14, 21 and 29 postinfection days (p.i.) for immunophenotyping and histological studies. Uninfected mice served as control. Characterization of isolated lymphocytes of C57BL control mice, confirmed that T cell immunophenotype differs in spleen, PP and i-IEL. Practically all i-IEL were CD3+ cells (83%). In addition, most of the i-IEL expressed Ly-2 (65%). Among the i-IEL, the level of gamma delta TCR+ cells was significantly higher (29%) than that found in spleen (3%) and PP (3%). The expression was high on CD3+ and Ly-2+ (26 and 21%, respectively) and low on L3T4+ i-IEL (< 1%). During T. spiralis infection alpha beta TCR+ CD3+, gamma delta TCR+ CD3+ and gamma delta TCR+ Ly-2+ i-IEL increased on day 4 and 7. However, infected mice displayed a reduction in i-IEL number from 14 to 29 p.i. day. At the same time the proportion of gamma delta TCR on spleen Ly-2+ and on PP CD3+ and Ly-2+ cells increased on 14 and 21 p.i. day. Adult worms were expelled from the gut by day 14. Thus, the kinetics of gamma delta TCR+ i-IEL, but not spleen and PP gamma delta TCR, corresponded to the kinetics of worm expulsion in C57BL mice. Most murine i-IEL of the gamma delta T cell lineage tend to be cytolytic when activated. We speculated that gamma delta T cells of i-IEL during the early stages of infection recognize and eliminate damaged epithelial cells generated by parasite antigens, simultaneously accelerating the worm expulsion.  相似文献   

17.
In the present study, we have analyzed the appearance and maturation of gamma/delta T cells, recognized with a new mAb V65, in the central and peripheral lymphoid organs of fetal, neonatal, and adult Wistar rats. Cytofluorometrical analysis demonstrated the first V65+ gamma/delta T cells in the thymus of 16-17-day embryonic rats, although by immunohistology, they were identified only in 19-day rat embryos in both the cortico-medullary border and thymic medulla. Phenotypically, gamma/delta thymocytes from fetal and neonatal thymus expressed CD3, CD2, and CD5, but only 60-80% were CD8+ and approximately 40-50% expressed the alpha chain (p55) of the IL-2R. In the periphery, the immunohistological study identified for the first time gamma/delta T cells in the splenic white pulp and the gut of 21-day fetal rats, where they occurred within the epithelium as well as in the lamina propria. After birth, gamma/delta lymphocytes appeared in the skin, where they were present as dendritic epidermal T cells in increasing numbers during postnatal life. Whereas these gamma/delta T cells formed the predominant T-cell population in the rat skin, gamma/delta T cells in peripheral lymphoid organs, BALT, or the gut only represented a minor T-cell population. These results are discussed in comparison to gamma/delta T cells of other vertebrate species.  相似文献   

18.
19.
Previous work from this laboratory has revealed that infection of mice with Leishmania major leads to an expansion of gamma delta+ T cells in the spleen. Further examination of the gamma delta+ T cells expanding in infected mice has shown that the majority of these cells in the spleen, lymph nodes, blood and liver expressed the V delta 4 gene segment. Cell cycle analysis, using propidium iodide incorporation, demonstrated that while only 1% of alpha beta+ T cells in the spleen were in either S + G2/M phase, up to 10% of the gamma delta+ T cells were in cycling phase 8 weeks after infection. Comparison of the state of activation of the two populations in different organs after infection, confirmed that gamma delta+ T cells are actively dividing in lymph nodes, liver and blood, but not in the thymus or among intraepithelial lymphocytes. Examination of the expression of different activation markers on the surface of gamma delta+ T cells in the spleen of both normal and chronically infected BALB/c mice by FACS analysis, revealed increased expression of LFA-1, CD25, CD44, 4F2, CD28 and the heat-stable antigen, whereas Thy-1 and CD5 decreased. Collectively, these results suggest an oligoclonal expansion and activation of gamma delta+ T cells in response to L. major infection.  相似文献   

20.
In the principal pathway of alpha/beta T cell maturation, T cell precursors from the bone marrow migrate to the thymus and proceed through several well-characterized developmental stages into mature CD4+ and CD8+ T cells. This study demonstrates an alternative pathway in which the bone marrow microenvironment also supports the differentiation of T cell precursors into CD4+ and CD8+ T cells. The marrow pathway recapitulates developmental stages of thymic maturation including a CD4+CD8+ intermediary cell and positive and negative selection, and is strongly inhibited by the presence of mature T cells. The contribution of the marrow pathway in vivo requires further study in mice with normal and deficient thymic or immune function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号