首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A plunger-type, completely hand-operated applicator prototype, made of polyvinyl chloride (PVC), for deep placement of urea briquettes (UB), i.e., pillow-shaped urea supergranules with edges, in line transplanted rice has been developed for use by small-scale rice farmers. The field evaluation of the applicator was conducted in the Philippines during the 1989 dry season. The applicator consistently placed UB at proper depth (7 to 8 cm), which resulted in low concentrations of urea N (<7 ppm) in about 4 cm of floodwater 1 day after placement. These findings indicated that the prototype worked properly. Average work output of the applicator was 0.20 ha workday–1 and may increase with practice. The yields of irrigated transplanted rice in the field trials show that agronomic efficiencies of hand-placed UB and applicator-placed UB were equal and were superior to those of split-applied prilled urea.  相似文献   

2.
Rice is the most important food crop in the developing countries of Asia, where population densities are very high and overall dietary levels are not adequate. In south and southeast Asia, rainfed and irrigated transplanted rice occupies nearly two–thirds of the rice-growing area and produces more than 80% of the paddy rice. In these areas, prilled urea (PU) conventionally applied by farmers is very inefficiently used by transplanted rice largely because of serious losses (up to 60% of applied N) via NH3 volatilization, denitrification, leaching, and/or runoff. In order to minimize N loss, especially loss due to denitrification, historically the Japanese have used different ways of deep placing fertilizer N. In 1975, IFDC proposed use of supergranules of urea (USG) in place of mudballs containing urea fertilizer to achieve the same agronomic benefits as achieved through the Japanese concept of deeppoint placement of fertilizer N in transplanted rice. USG can be prepared by melt-type processes (pan granulation, falling curtain, and fluid bed) and briquetting (a special type of compaction). The latter process seems to be the most cost-effective viable alternative. Small-scale briquetting machines have been developed to produce urea bgriquettes (UB) at village level at a rate of 200–250 kg h?1. Basically, USG are large, discrete particles of ordinary urea [(NH2)2CO] containing 46% N as NH2 (amide form); their weights may vary from 1 to 2 g per particle. USG from melt granulation process are nearly spherical with a relatively smooth surface, while UB from briquetting will be pillow-shaped with broken edges. Placement of USG can be done efficiently by handafter conventional line transplanting (e.g., researcher's method or IFDC transplanting guide method) orduring line transplanting (e.g., IFDC dispenser method) at the rate of one USG near the center of each four rice hills to a 7–10 cm soil depth. The IFDC methods have been developed mainly for economically disadvantaged small rice farmers of developing countries, especially those who transplant rice at random in rainfed areas. Other alternative manual methods such as incorporation of broadcast USG, random deep placement of USG by hand before line transplanting, or the deep placement by foot before or after transplanting may be less labor intensive; however, their agronomic efficiency has been low and highly variable, and they therefore cannot be recommended to farmers. Various continuous operation-type applicators (prototypes) have been developed in the Philippines, India, and China for mechanical deep placement of USG in line-transplanted rice. A few prototypes have been found to be labor saving and agronomically efficient when tested on research farms. However, several design-related problems associated with their metering mechanisms, placement depths, closing of furrows at the placement sites, output per workday, and/or operators' comfort, etc., need to be solved. In short, continuous operation-type applicators that are affordable and still efficient for deep placement of UB are not yet available for use on farmers' fields where floodwater and soil conditions vary substantially. The noncontinuous operation-type UB applicator prototype developed by IFDC is not as labor saving as the continuous operation-type applicators. However, its proper use with adequate practice can help to minimize the drudgery and to save up to 40% of the labor required for the hand placement method. This completely manual UB applicator, made of polyvinyl chloride (PVC) is simple to use, lightweight, and affordable as well as agronomically efficient on farmers' fields. As a result of diffusive transport and cation exchange, typically steep concentration gradients (or spatial distribution patterns) of ammonium exist at the placement sites and eventually control the rate and duration of availability of USG-N to the rice plants. USGper se is not a slow-release nitrogen fertilizer but behaves like a slowly available nitrogen fertilizer. Because the deep-placed USG-N is well protected from various N loss mechanisms (except leaching) at the placement sites in soils and the spatial ammonium concentration gradients help to improve its plant availability, (1) uptake of N by rice plants (recovery) is significantly increased, (2) relatively smaller amounts of USG-N as nonexchangeable ammonium and/or immobilized organic N stay in soil, and (3) eventually N losses (gaseous and runoff) are markedly decreased. Thus, this practice is agronomically efficient as well as environmentally safe. However, this practice should not be used in permeable soil with coarse texture and low cation exchange capacity (CEC) because the high loss of USG-N via leaching will significantly decrease N uptake by the rice plants and eventually grain yield too. Several hundred field trials conducted by national and international institutions in south and southeast Asia since 1975 have demonstrated the agronomic superiority of the deep placement of USG vis-a-vis split applications of PU in transplanted rice. In general, paddy yield responses to deep-placed USG tend to be more curvilinear than do those to split-applied PU, thus resulting in higher agronomic efficiency for deep-placed USG in the lower range of N rates (30–80 kg N ha?1) than in the higher range of N rates (> 90 kg N ha?1). Depending on agroclimate and N rates used, in general deep-placed USG can help to provide a saving of urea fertilizer of up to 65% with an average of 33% and can help to increase grain yields up to 50% with an average of 15% to 20% over that with the same amount of split-applied N as PU, especially in the lower range of N rates. USGper se is not an efficient nitrogen fertilizer, but the proper deep placement of USG in transplanted rice makes it agronomically efficient. In using USG, consideration of the following factors should help to ensure agronomic efficiency of deep-placed USG and increase the chances of obtaining additional yield.
  1. Soil factors: Only use in soils having a low water percolation rate and a CEC ? 10 meq 100 g?1 soil.
  2. Plant factors: Give preference to short- to medium-duration dwarf rice varieties. For the longduration variety, basal deep-placed USG with a suitable topdressing of N as PU at panicle initiation stage would be helpful.
  3. Management factors: Apply basally 30 to 60 kg USG-N ha?1 using only USG of the right weight (1–2 g urea granule?1). Place one supergranule for each four hills at 7–10 cm soil depth using the right plant population and modified spacing. Use modified 20 cm × 15 cm or 20 cm × 20 cm spacing to facilitate efficient placement of USG by hand or machine. Workers should always use the so-called traffic lane of the modified spacing for performing all post-transplanting field operations. When deep placement of USG is delayed after transplanting, extra care is necessary to close the holes left at the placement sites. When puddling is inadequate or improper and deep placement is done during transplanting, some care may be required to close the holes.
A scheme of small-scale production of UB at village level, using briquetting machines and locally available PU as a feedstock, looks promising for developing countries. The estimated production cost of UB is likely to be up to 10% higher than that of PU. In general, the estimated incremental benefit/cost ratios of hand deep-placed USG in line-transplanted rice are quite attractive, usually ?5 for small rice farmers of developing Asia. Technological and agroeconomic considerations suggest that the practice of hand deep placement of USGduring or after line transplanting appears to be a right agrotechnology for the resource-scarce small rice farmers of developing countries for efficiently using affordable doses of nitrogen (30–60 kg UB-N ha?1) to significantly increase grain yields of transplanted rice. For other rice farmers who are not economically handicapped, who have access to irrigation, and who transplant rice in line and can afford to use high rates of N (> 90 kg N ha?1), it can be an attractive practice, if appropriate machines for deep placement of USG have been developed. Therefore, research and development work is needed to develop affordable, labor-saving, and agronomically efficient continuous operation-type applicators for mechanical deep placement of UB. The use of USG as a source of N for transplanted rice has potential in developing countries. What is now required is to first develop practical stepwise and region-specific agrotechnologies consisting of appropriate UB supply schemes and rice farming systems based on hand or machine deep placement of UB in line-transplanted rice for different regions in a given country. Then it will be necessary to adopt an appropriate diffusion strategy for transfer of the region-specific agrotechnologies to the rice farmers. In this extension activity, long-term commitment and integrated efforts are required by national government organizations as well as by nongovernment organizations and the fertilizer industry.  相似文献   

3.
Alternative N fertilizer management practices are needed to increase productivity and N use efficiency in lowland rice (Oryza sativa L.). In 1986 dry season, a field study using15N-labeled urea evaluated the effect of time and method of fertilizer N application on grain yield and N use efficiency. Conventional fertilizer application was compared with band placement of liquid urea and point placement of urea supergranules (USG). Grain yields were significantly higher with either band or point placement than with broadcast and incorporation or surface application. Partial pressure of NH3 (NH3) was significantly reduced when N was deep-placed.15N balance data show that fertilizer N applied basally and incorporated gave a total15N recovery of 52% and crop (grain + straw) recovery of 30%. Band placement of liquid urea N resulted in 82–90% total and 57–65% crop15N recovery. USG point placement gave 94% total and 70% crop15N recovery. Deep placement of second N application gave only slightly higher (98%)15N recovery compared with broadcast application (89%).  相似文献   

4.
Methane (CH4) emissions were measured with an automated system in Central Luzon, the major rice producing area of the Philippines. Emission records covered nine consecutive seasons from 1994 to 1998 and showed a distinct seasonal pattern: an early flush of CH4 before transplanting, an increasing trend in emission rates reaching maximum toward grain ripening, and a second flush after water is withdrawn prior to harvesting. The local practice of crop management, which consists of continuous flooding and urea application, resulted in 79–184 mg CH4 m–2 d–1 in the dry season (DS) and 269–503 mg CH4 m–2 d–1 in the wet season (WS). The higher emission in the WS may be attributed to more labile carbon accumulation during the dry fallow period before the WS cropping as shown by higher % organic C. Incorporation of sulfate into the soil reduced CH4 emission rates. The use of ammonium sulfate as N fertilizer in place of urea resulted in a 25–36% reduction in CH4 emissions. Phosphogypsum reduced CH4 emissions by 72% when applied in combination with urea fertilizer. Midseason drainage reduced CH4 emission by 43%, which can be explained by the influx of oxygen into the soil. The practice of direct seeding instead of transplanting resulted in a 16–54% reduction in CH4 emission, but the mechanisms for the reducing effect are not clear. Addition of rice straw compost increased CH4 emission by only 23–30% as compared with the 162–250% increase in emissions with the use of fresh rice straw. Chicken manure combined with urea did not increase CH4 emission. Fresh rice straw has wider C/N (25 to 45) while rice straw compost has C/N = 6 to 10 and chicken manure has C/N = 5 to 8. Modifications in inorganic and organic fertilizer management and water regime did not adversely affect grain yield and are therefore potential mitigation options. Direct seeding has a lower yield potential than transplanting but is getting increasingly popular among farmers due to labor savings. Combined with a package of technologies, CH4 emission can best be reduced by (1) the practice of midseason drainage instead of continuous flooding, (2) the use of sulfate-containing fertilizers such as ammonium sulfate and phosphogypsum combined with urea; (3) direct seeding crop establishment; and (4) use of low C/N organic fertilizer such as chicken manure and rice straw compost.  相似文献   

5.
The potential for improved fertilizer N use efficiency was tested using a slow release N fertilizer, methylene urea (MU), on processing tomato (Lycopersicon esculentum Mill.) in a 2-year field study in the Sacramento Valley, California. Fertilizer N use efficiency of urea and a (50:50, w:w) mixture of urea and MU (uMU) was determined in direct-seeded and transplanted tomato plots with winter cover crop (CC) or winter fallow (F) using 15N labeled fertilizers. Residual MU-N was estimated from tomato N uptake in the 15N microplots, and from residual 15N uptake of wheat grown after two tomato crops. No significant differences were found in the quantity and quality of tomato yields among fertilizer and management treatments during the first year. Total yields in transplanted FuMU plots were significantly lower in the second test year, suggesting slow mineralization of MU-N in the F treatment. On average, about 40% of added fertilizer N was taken up in both fertilizer treatments, and the recovery of 15N in plant biomass and soil was 75–96 and 50–74% in seeded and transplanted blocks, respectively. In the laboratory, mineralization of MU started faster in soils with past MU use, but the enhanced mineralization did not affect the plant N uptake in the field. MU is potentially an environmentally attractive fertilizer, but without an immediate increase in yield and N use efficiency compared to conventional fertilizers, its use on row crops may not be economically feasible unless the positive environmental factors like decreased leaching of N are considered.  相似文献   

6.
To increase the fertilizer-N efficiency in lowland rice (Oryza sativa L.) cultivation, new management practices are needed. Main cause of the present low efficiency is the low N recovery by plants, as a considerable part of the N applied is lost; deep placement techniques improve the recovery. A pneumatic injector, with which urea prills can be point-placed at a depth of 5–10 cm in paddy soils, was tested in 38 on-farm trials in 1989/90, mostly during the wet season. The experiments, located in Africa and Asia, focussed on differences in grain yield between conventional methods of broadcasting urea and injection by the pneumatic injector, at recommended N-rates. The study shows that the pneumatic injector is effective as a tool to improve the N fertilizer efficiency. The average yield increases per region, resulting from the use of the injector, ranged from about 250 to 1300 kg grain ha–1. The value of the yield increase would allow most farmers to recover the costs of the injector within one season, even if labour was hired to carry out the injections. The average labour requirement of the injector was 40 hours ha–1. In Indonesia, injection of prilled urea gave yields similar to those obtained with urea briquettes.  相似文献   

7.
Alternative N-fertilizer management practices are needed to increase productivity and the N-use efficiency of flooded rice (Oryza sativa L.). Seven field experiments were conducted at various sites in Bangladesh and Indonesia to evaluate the effect of time and method of fertilizer-N application on grain yield in transplanted rice. Conventional fertilizer application was compared with band placement of liquid urea using a mechanical push-type injector and point placement of urea supergranules. With band placement, grain yields were up to 38 and 55% higher than with researchers' and farmers' practices, respectively, and similar to those with point placement of urea supergranules.  相似文献   

8.
Decline in crop yields is a major problem facing smallholder farmers in Kenya and the entire Sub-Saharan region. This is attributed mainly to the mining of major nutrients due to continuous cropping without addition of adequate external nutrients. In most cases inorganic fertilizers are expensive, hence unaffordable to most smallholder farmers. Although organic nutrient sources are available, information about their potential use is scanty. A field experiment was set up in the sub-humid highlands of Kenya to establish the chemical fertilizer equivalency values of different organic materials based on their quality. The experiment consisted of maize plots to which freshly collected leaves of Tithonia diversifolia (tithonia), Senna spectabilis (senna) and Calliandra calothyrsus (calliandra) (all with %N>3) obtained from hedgerows grown ex situ (biomass transfer) and urea (inorganic nitrogen source) were applied. Results obtained for the cumulative above ground biomass yield for three seasons indicated that a combination of both organic and inorganic nutrient source gave higher maize biomass yield than when each was applied separately. Above ground biomass yield production in maize (t ha–1) from organic and inorganic fertilization was in the order of senna+urea (31.2), tithonia+urea (29.4), calliandra+urea (29.3), tithonia (28.6), senna (27.9), urea (27.4), calliandra (25.9), and control (22.5) for three cumulative seasons. On average, the three organic materials (calliandra, senna and tithonia) gave fertilizer equivalency values for the nitrogen contained in them of 50, 87 and 118%, respectively. It is therefore recommended that tithonia biomass be used in place of mineral fertilizer as a source of nitrogen. The high equivalency values can be attributed to the synergetic effects of nutrient supply, and improved moisture and soil physical conditions of the mulch. However, for sustainable agricultural production, combination with mineral fertilizer would be the best option.  相似文献   

9.
Low nutrient recovery in upland crop production systems has prompted studies to improve the current nutrient management practices to increase fertilizer efficiency. Field studies were conducted in two growing seasons (2012 and 2013) under two land management systems (till and no-till) to evaluate agronomic effectiveness of a multi-nutrient fertilizer briquette (fertilizer briquettes) for upland crop production, using corn as test crop. The fertilizer briquettes were produced through a simple physical compaction of ordinary granular fertilizers with a final nutrient composition of 23.9% N, 19.2% P2O5, 19.1% K2O, 0.9% Zn, and 2.5% S. The agronomic efficiency of the fertilizer briquettes were compared with commercial N sources, urea and ammonium sulfate supplied separately with phosphorus (P), potassium (K), zinc (Zn), and sulfur (S; for urea alone). During the wetter (2013) weather conditions, the fertilizer briquette treatment consistently produced the highest yields in both locations. At Ames Plantation, the fertilizer briquette treatment increased grain yields by ~ 16 and ~ 23% over the treatments having ammonium sulfate and urea granular fertilizers, respectively, and, in Jackson, by 16 and 34% respectively. Nutrient recovery efficiency was also greatest with the fertilizer briquettes treatment. However, during the drier weather conditions (2012), the fertilizer briquettes treatment was the least effective among the three treatments in terms of biomass and grain yields, and nutrient recovery efficiency. We conclude, with adequate rainfall conditions, the fertilizer briquettes could be an efficient fertilizer for upland crop production. However, under drier weather conditions where soil moisture is limited, the fertilizer briquettes may not be an ideal fertilizer source for upland crop production.  相似文献   

10.
Field experiments were conducted in Central Thailand under a rice–fallow–rice cropping sequence during consecutive dry and wet seasons of 1998 to determine the impact of residue management on fertilizer nitrogen (N) use. Treatments consisted of a combination of broadcast urea (70 kg N ha–1) with rice straw (C/N 67) and rice hull ash (C/N 76), which were incorporated into the puddled soil 1 week before transplanting at a rate of 5 Mg ha–1. Nitrogen-15 balance data showed that the dry season rice recovered 10 to 20% of fertilizer N at maturity. Of the applied N, 27 to 36% remained in the soil. Loss of N (unaccounted for) from the soil–plant system ranged from 47 to 54% of applied N. The availability of the residue fertilizer N to a subsequent rice crop was only less than 3% of the initial applied N. During both season fallows NO3-N remained the dominant form of mineral-N (NO3+NH4) in the aerobic soil. In the dry season grain yield response to N application was significant (P=0.05). Organic material sources did not significantly change grain yield and N accumulation in rice. In terms of grain yields and N uptake at maturity, there was no significant residual effect of fertilizer N on the subsequent rice crop. The combined use of organic residues with urea did not improve N use efficiency, reduced N losses nor produced higher yields compared to urea alone. These results suggested that mechanisms such as N loss through gaseous N emissions may account for the low fertilizer N use efficiency from this rice cropping system. Splitting fertilizer N application should be considered on the fertilizer N use from the organic residue amendment.  相似文献   

11.
Low yields and high risk characterize many rain-fed lowland rice environments, including those in Laos. Drought and fluctuating soil-water conditions (from aerobic to anaerobic states) can limit productivity and the efficient use of applied nutrients. Although addition of organic matter may improve the efficiency of fertilizer use, on-farm residues, for example farmyard manure (FYM), rice straw and rice hulls, are, currently, poorly utilized in these systems. Single and multi-year experiments were designed to evaluate the effect of these residues on rice productivity and efficiency of fertilizer use at four sites. Rice yield without fertilizer but with addition of residues ranged from 1.1 to 1.7 t ha−1 across sites and years. In response to fertilizer, yields increased on average by 1.4 t ha−1. For all sites and years there was a significant response of yield to organic residues applied without fertilizer, with responses ranging from 0.2 to 1.4 t ha−1. In 58% of cases there was no residue×fertilizer interaction (benefits of residues when applied with fertilizer were additive). In 38 and 4% of cases the interaction was negative (no response to residues if fertilizer was already applied) or positive (synergistic), respectively. In the multi-year studies, the type of interaction varied between years, suggesting that seasonal events, rather than soil type, determine the type of interaction. The greatest benefits of applying organic and chemical fertilizers together were observed in years when soil-water conditions were unfavorable (fluctuating anaerobic–aerobic conditions). The long-term effects of these different management strategies on soil nutrient balances suggest that N, P, and K balances were maintained as a result of balanced commercial fertilizer management but that addition of residues further enhanced these balances. All residues, when applied alone, resulted in positive soil Si balances; only with FYM were long-term N, P, and K balances maintained or positive, however. For resource-poor farmers, applying on-farm residues can be a sustainable approach to increasing productivity.  相似文献   

12.
Nitrogen use efficiency (NUE) in rice is low due to the inefficient management of fertilizer N by farmers. We evaluated a leaf color chart (LCC) as a simple tool for improving the time and rate of N fertilizer use in farmers’ fields for 4 years (2000–2003) in irrigated rice in northwestern India. Application of N fertilizer whenever leaf greenness was less than shade 4 on the LCC (the critical LCC value) produced rice grain yields on a par with blanket recommendation of applying 120 kg N ha−1 in three equal splits in different years, but it resulted in an average saving of 26% fertilizer N across villages and seasons. In most situations, there was no significant advantage of applying 20 kg N ha−1 as basal N at transplanting on grain yield and NUE of rice compared with no basal N. Use efficiencies of fertilizer N were higher when N was applied using LCC with a critical value of 4 than the recommended practice of applying 120 kg N ha−1 in three equal split doses on all sites and in all years. The LCC with a critical value of 4 for real-time N management can be efficiently used to increase NUE in all types of inbred rice cultivars presently popular with the farmers of the Indian Punjab. The LCC is a cheap and easy-to-use tool that allows real-time N management by farmers on a large area leading to improved fertilizer N use efficiency, and reduced risks associated with fertilizer N application.  相似文献   

13.
Efficiency improving techniques, such as the introduction of a urea injector for lowland rice production, appear to lead to higher yields, lower fertilizer use and less environmental pollution at the same time. If farmers are free to decide on the amount of fertilizer they use, economic rationality leads to a choice between using the improved technique for saving fertilizer while obtaining the same yield, for increasing yield (at the same fertilizer rate) or for a mixed strategy (a slightly higher yield and a different fertilizer rate). The economic optimum fertilizer rate was calculated with a simple yield model for a low and a high fertilizer application efficiency to predict which strategy would be best for the farmer.Calculations for a standard data set for lowland rice show that the greatest benefit from an increase in application efficiency by urea deep placement instead of broadcast application can be expected when a marginal efficiency of about 9 kg rice per kg fertilizer N is used for determining the fertilizer rate. For a marginal efficiency of less than 6, savings on fertilizer are the main benefit of efficiency improvement; for higher marginal efficiencies yield increases become the main component of total benefit; for marginal efficiencies above 9, fertilizer use will increase when a more efficient technique is used, but increased yields compensate for their costs. In the four countries where a manually operated pneumatic urea injector was tested (Togo, Bangladesh, Indonesia and Ivory Coast) the price ratio of rice and fertilizer N ranged from 1.1 to 2.5. Even when a risk-avoidance multiplier of 2 is used, we may conclude that fertilizer prices were too low relative to rice to make optimum use of the existing techniques for efficiency improvement. An equation is derived for estimating the price ratio at which the probability of farmer acceptance of techniques for improving fertilizer use efficiency is highest.  相似文献   

14.
Although efficient use of N remains a critical constraint to productivity in irrigated lowland rice, a comprehensive database does not exist for the efficiency of on-farm management of N and other nutrients. In 1994, IRRI initiated its Mega Project on Reversing Trends of Declining Productivity in Intensive Irrigated Rice Systems in selected rice production domains of five tropical Asian nations to improve on-farm fertilizer-use efficiency and to monitor long-term productivity trends as related to fertilizers and other inputs. Data are reported here for the first crop cycle, the 1994–95 dry season. The indigenous soil N supply (INS) was estimated by aboveground crop N uptake and grain yield (GY) in plots without applied N established in farmers' fields under otherwise favorable growth conditions. The fertilizer N rate each farmer applied to his/her field surrounding these plots was recorded; GY was also measured in that area. In each domain, GY in unfertilized plots varied considerably among farms, as the range between maximum and minimum values within each domain was at least 2.8 t ha-1, thus of comparable magnitude to mean GY for these plots. Fertilizer N rates varied from 36–246 kg ha-1 across all domains, but their lack of relationship to INS contributed to relatively low fertilizer N efficiency and high variability in efficiency among farms. Mean agronomic efficiency (GY/applied N rate) for each domain was only 6–15 kg grain kg-1 N, while values for individual farmers ranged from 0 to 59 kg grain kg-1 N. Initial data on P and K fertilizer management also suggest highly variable applications at suboptimal efficiency. These results indicate the potential for greater fertilizer efficiency from improved congruence between the indigenous soil supply and applied fertilizer, and emphasize the need for field-specific nutrient management. Although agronomic efficiency and partial factor productivity (GY/applied N rate) can each be used to describe the efficiency of fertilizer applications, a complete analysis of nutrient management should include both terms, grain yield, fertilizer rates, and native soil fertility.  相似文献   

15.
Field trials were conducted in the Philippines and India during 1989 and 1990 seasons to study comparative yield responses of transplanted rice (Oryza sativa L.) to pillow-shaped urea briquettes (UB) deep placed by an applicator (prototype developed by IFDC) and by hand immediately after transplanting. The applicator-placed UB consistently increased grain yields over the split-applied prilled urea, and the additional yields ranged from 0.23 to 1.48t ha–1 (5 to 83%) for 25 to 63 kg N ha–1. Agronomic responses of transplanted rice to the UB placed by the applicator and by hand were statistically equal. Modified rice hill spacing may be considered as a requirement for efficient use of the applicator. The results demonstrate that with the UB applicator it is possible to deep place UB mechanically and achieve the agronomic efficiency that is achieved by hand deep placement of the UB.  相似文献   

16.
Green manuring of rice with dhaincha (Sesbania aculeata) is widely practised under irrigated puddle-transplanted conditions. In flood-prone lowlands, the rice is established through direct seeding early in the season and flooding occurs after 1–2 months of crop growth following regular rains. The low yields are due to poor crop stands and difficulty in nitrogen management under higher depths of water. The effect of green manuring with dhaincha intercropped with direct-seeded rice vis-à-vis the conventional practice of incorporating pure dhaincha before transplanting was investigated under flood-prone lowland conditions (up to 50–80 cm water depth) at Cuttack, India. Treatment variables studied in different years (1992, 1994 and 1995) were: rice varieties of different plant heights, crop establishment through direct seeding and transplanting, varying length of periods before dhaincha incorporation, and urea N fertilizer levels. Dhaincha accumulated 80–86 kg N ha-1 in pure stand and 58–79 kg N ha-1 when intercropped with direct-seeded rice in alternate rows at 50 days of growth. The growth of rice improved after dhaincha was uprooted manually and buried in situ between the rice rows when water depth was 10–20 cm in the field. The panicle number was lower but the panicle weight was higher with dhaincha green manuring than with recommended level of 40 kg N ha-1 applied as urea. The grain yield was significantly higher with direct seeding than with transplanting due to high water levels (>60 cm) immediately after transplanting. Dhaincha manuring was at par with 40 kg N ha-1 as urea in increasing the yield of direct-seeded and transplanted crops. The highest yield of direct-seeded crop was obtained when 20 kg N ha-1 was applied at sowing and dhaincha was incorporated at 50 days of growth. The results indicate that green manuring of direct-seeded rice with intercropped dhaincha is beneficial for substituting urea fertilizer up to 40 kg N ha-1 and augmenting crop productivity under flood-prone lowland conditions.  相似文献   

17.
The growth of weeds and their subsequent reduction of rice yield as affected by N source neem cake coated urea (NCU), dicyandiamide coated urea (DCU), rock phosphate coated urea (RPCU), urea supergranules (USG) and prilled urea (PU) was studied on a clay loam soil at Coimbatore, India. Experiments were conducted in northeast monsoon (NEM) 1981, summer 1982, and southwest monsoon (SWM) 1982 seasons.The crop was associated with eleven weed species, and the dominant weeds wereEchinochloa crus-galli, Cyperus difformis andMarsilea quadrifolia. The weed flora varied between seasons. Deep placement of USG reduced the dry weight of weeds in NEM and summer seasons at 60, 90 and 120 Kg N ha–1 whereas it increased the dry weight at 60 and 90 but not 120 Kg N ha–1 in SWM season. The dry weight of weeds decreased with increased N rates for all N sources during NEM and summer seasons. In SWM season, dry weight of weeds increased with increased N rates for all N sources except USG. The grain yield of rice was drastically reduced with the deep placement of USG at 60 but not 120 Kg N ha–1 in SWM season. The differential effect of the N sources between seasons was due to the change of the weed flora. Dominance ofE. crus-galli during SWM season had greater influence on weed dry weight and grain yield of rice.Nitrogen uptake by weeds was frequently greater in unfertilized plots, particularly in NEM and summer seasons. In SWM season, the apparent fertilizer N recovery by weeds was high for USG. It decreased from 53% for 60 Kg USG-N ha–1 to 4% for 120 Kg USG-N ha–1.Contribution from the part of Ph.D. work of the first author at Department of Agronomy, Tamil Nadu Agricultural University, Coimbatore-641 003, Tamil Nadu, India.  相似文献   

18.
N-use efficiency in flooded tropical rice is usually low. Fertilizer N losses result mainly from losses of volatile NH3 after broadcast application of urea into floodwater between transplanting and early tillering which is a common practice of farmers. Losses appear predominantly during the first week after urea application. With broadcast and incorporation of N into soil at transplanting losses may be reduced but are still substantial. Deep placement of urea supergranules (USG) has not been adopted by farmers because it is very laborious. A new application technique, namely injection of dissolved urea into the upper soil layer, was developed by which fertilizer N losses were effectively minimized while at the same time allowing flexible timing of application independent of crop stage and water management. It provides N-use efficiency equal to that achieved by USG point placement but is less labor-intensive.  相似文献   

19.
Five pot experiments were conducted with wheat and rice in a net house to study the effect of lime nitrogen (LN, contains about 55% calcium cyanamide) amendment rates on the efficiency of urea, the recovery urea-15N, the efficiency of the three nitrogen fertilizers(NF), on the efficiency of urea in the three soils, and on NO 3 - -N leaching from a flooded soil. A rate of LN-N of 5–8% of applied fertilizer N increased the recovery of labeled urea-N by 9.42%. The effect of LN on the efficiency of NF was urea > ammonium sulfate > ammonium chloride. Under flooded conditions, LN decreased NO 3 - formation and leaching.Responses of several crops to LN amended fertilizers were also studied in field experiments. At equal NPK applications, the efficiency of basal applications to rice, wheat, corn, potatoes, soybean, peanut, grapes, peaches, melon and watermelon were bette r with LN than without. Efficiency with a basal fertilizer for rice or wheat with LN were the same as with the same fertilizer without LN applied in split applications.  相似文献   

20.
Experiments were conducted to monitor the movement and distribution of ammonium-N after placement of urea and ammonium sulfate supergranules at 5, 7.5, 10, and 15 cm. By varying depths of fertilizer placement, it is possible to determine the appropriate depth for placement machines. There were no significant differences in grain yields with nitrogen placed 5 and 15 cm deep. However, grain yields were significantly higher with deep placement of nitrogen than with split application of the fertilizer. The lower yields with split-applied nitrogen were due to higher nitrogen losses from the floodwater. The floodwater with split application had 78–98µg N ml–1 and that with deep-placed nitrogen had a negligible nitrogen concentration.Movement of NH 4 + -N in the soil was traced for various depths after fertilizer nitrogen application. The general movement after deep-placement of the ammonium sulfate supergranules was downward > lateral > upward from the placement site. Downward movement was prevalent in the dry season: fertilizer placed at 5–7.5 cm produced a peak of NH 4 + -N concentration at 8–12 cm soil depth; with placement at 15 cm, the fertilizer moved to 12–20 cm soil depth. Fertilizer placed at 10 cm tended to be stable. In the wet season, deep-placed N fertilizer was fairly stable and downward movement was minimal.A substantially greater percentage of plant N was derived from15N-depleted fertilizer when deep-placed in the reduced soil layer than that applied in split doses. The percent N recovery with different placement depths, however, did not vary from each other. The results suggest that nitrogen placement at a 5-cm soil depth is adequate for high rice yields in a clayey soil with good water control. In farmers' fields where soil and water conditions are often less than ideal, however, it is desirable to place nitrogen fertilizer at greater depths and minimize NH 4 + -N concentration in floodwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号