首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Crack Healing in Silicon Carbide   总被引:1,自引:0,他引:1  
Crack healing in silicon carbide was investigated by introducing cracks into specimens and subsequently heat-treating the specimens. It was observed that cracks were healed, dramatically increasing the strength, by being filled with amorphous silica produced by the oxidation of silicon carbide. It was shown that the residual stress produced by the thermal expansion mismatch between silica within cracks and surrounding silicon carbide played a major role in the increase of the strength. Our results imply that a simple oxidation heat treatment can improve the reliability of silicon carbide components.  相似文献   

2.
Crack-Healing Behavior of Liquid-Phase-Sintered Silicon Carbide Ceramics   总被引:1,自引:0,他引:1  
Crack-healing behavior of liquid-phase-sintered (LPS) SiC ceramics has been studied as functions of heat-treatment temperature and crack size. Results showed that heat treatment in air could significantly increase the indentation strength. The heat-treatment temperature has a profound influence on the extent of crack healing and the degree of strength recovery. The optimum heat-treatment temperature depends on the softening temperature of an intergranular phase in each material. After heat treatment at the optimum temperature in air, the crack morphology almost entirely disappeared and the indentation strength recovered to the value of the smooth specimens at room temperature for the investigated crack sizes up to ∼200 μm. In addition, a simple heat treatment of SiC ceramics sintered with Al2O3–Y2O3–CaO at 1100°C for 1 h in air resulted in even further improvement of the strength, to a value of 1054 MPa (∼150% of the value of the unindented strength). Crack closure and rebonding of the crack wake due to oxidation of cracked surfaces were suggested as a dominant healing mechanism operating in LPS-SiC ceramics.  相似文献   

3.
The development of the carbon-rich interphase in Nicalon SiC fiber/Li2O-Al2O3–SiO2 glass matrix composites was examined as a function of processing parameters with the use of high-resolution scanning electron microscopy and Auger electron spetroscopy. Specifically, hot-pressing temperatures (1000°, 1100°, and 1200°C) and times (15, 30, 60, and 240 min) were systematically varied in such a manner so as to fabricate dense composites suitable for evaluation of reaction kinetics. Carbon-rich interphase thickness, which ranged from 1400 to 5400 Å (140 to 540 nm), was observed to increase with either increasing times at constant temperature or increasing temperatures at constant time. The kinetics of formation of the carbon-rich interphase followed a diffusion-controlled model, with an activation energy of 25.4 kcal/mol.  相似文献   

4.
Mullite/SiC composite ceramics were sintered and subjected to three-point bending of specimens made according to the appropriate JIS standard. A semicircular surface crack 100 to 250 μm in diameter was made on each specimen. We systematically studied crack-healing behavior and cyclic- and static-fatigue strengths at room temperature and 1000°C (crack-healing temperature) by using three types of specimens (smooth, cracked, and crack-healed). The main conclusions are as follows: (i) mullite/SiC composite ceramics have the ability to heal after cracking; (ii) crack-healed specimens exhibited higher static and fatigue strengths than those of smooth specimens, which was caused by crack-healing; (iii) a sample crack-healed at 1000°C had a high fatigue strength at 1000°C; and (iv) mullite/SiC ceramics can heal a crack under stress at 1000°C, and this behavior was considered using crack-driving force and crack-healing force, qualitatively.  相似文献   

5.
Green State Joining of Silicon Carbide Using Polycarbosilane   总被引:1,自引:0,他引:1  
Green state joining of SiC was investigated using a paste consisting of polycarbosilane polymer and SiC powder. The joining process and densification were described. Initial experiments resulted in the formation of symmetrical black bands and cracks on both sides of the joint. However, with modifications in processing conditions, the cracks were eliminated and the resulting joints were indistinguishable from the matrix. The flexural strength of joined samples was measured to be 234 MPa, which was comparable to that of the control sample with similar density. As the applied pressure during joining was increased from 34 to 138 MPa, the strength of the joined samples increased from 180 to 250 MPa.  相似文献   

6.
SiC-monofilament-reinforced SiC or Si3N4 matrix composites were fabricated by hot-pressing, and their mechanical properties and effects of filaments and filament coating layers were studied. Relationships between frictional stress of filament/matrix interface and fracture toughness of SiC monofilament/Si3N4 matrix composites were also investigated. As a result, it was confirmed experimentally that in the case of composites fractured with filament pullout, the fracture toughness increased as the frictional stress increased. On the other hand, when frictional stress was too large (>about 80 MPa) for the filament to be pulled out, fracture toughnesses of the composites were almost the same and not so much improved over that of Si3N4 monolithic ceramics. The filament coating layers were found to have a significant effect on the frictional stress of the SiC monofilament/Si3N4 matrix interface and consequently the fracture toughness of the composites. Also the crack propagation behavior in the SiC monofilament/Si3N4 matrix composites was observed during flexural loading and cyclic loading tests by an in situ observation apparatus consisting of an SEM and a bending machine. The filament effect which obstructed crack propagation was clearly observed. Fatigue crack growth was not detected after 300 cyclic load applications.  相似文献   

7.
Composites of SiC/Si and SiC/SiC were prepared from single yarns of SiC. The use of carbon coatings on SiC yarn prevented the degradation normally observed when chemically vapor deposited Si is applied to SiC yarn. The strength, however, was not retained when the composite was heated at elevated temperatures in air. In contrast, the strength of a SiC/C/SiC composite was not reduced after this composite was heated at elevated temperatures, even when the fiber ends were exposed.  相似文献   

8.
Cyclic fatigue properties of high-toughness SiC with additives of Al2O3 and Y2O3 were examined, with a focus on differences between long- (>3 mm) and small-crack (<200 μm) behavior. Small cracks were initiated with Vickers indents placed on the tensile surfaces of beams, and crack extension was monitored optically under cyclic load. For small cracks, high growth rates which exhibited a negative dependence on the far-field driving force were observed. Such behavior was explained by both indent-induced residual stresses and the relative size of cracks compared with bridging zone lengths.  相似文献   

9.
Mechanical Properties of Alumina/Silicon Carbide Whisker Composites   总被引:1,自引:0,他引:1  
The improvement of mechanical properties of Al2O3/SiC whisker composites has been studied with emphasis on the effects of the whisker content and of the hot-pressing temperature. Mechanical properties such as fracture toughness and fracture strength increased with increasing whisker content up to 40 wt%. In the case of the high SiC whisker content of 40 wt%, fracture toughness of the sample hot-pressed at 1900° decreased significantly, in spite of densification, compared with one hot-pressed at 1850°. Fracture toughness strongly depended on the microstructure, especially the distribution of SiC whiskers rather than the grain size of the Al2O3 matrix.  相似文献   

10.
The effects of two different sources of SiC whiskers on the chemistry and microstructure of the SiC-whisker—Si3N4 composites were evaluated using scanning transmission electron microscopy. Analyses were performed after presintering in N2 and after encapsulated hot isostatic pressing. Significant differences in the porosity, α- to β-Si3N4 conversion, and whisker degradation were observed after presintering. It was also noted that whiskers containing surface iron impurities were converted to Si3N4 during processing. Whiskers from the source having low surface iron exhibited little reaction. After hot isostatic pressing, some oxidation of the cleaner whiskers was observed.  相似文献   

11.
Thermal expansions of three two-dimensional laminate, continuous fiber/chemical-vapor-infiltrated silicon carbide matrix composites reinforced with either FP-Alumina (alumina), Nextel (mullite), or Nicalon (Si-C-O-N) fibers are reported. Experimental thermal expansion coefficients parallel to a primary fiber orientation were comparable to values calculated by the conventional rule-of-mixtures formula, except for the alumina fiber composite. Hysteriesis effects were also observed during repeated thermal cycling of that composite. Those features were attributed to reoccurring fiber/matrix separation related to the micromechanical stresses generated during temperature changes and caused by the large thermal expansion mismatch between the alumina fibers and the silicon carbide matrix.  相似文献   

12.
Thermal diffusivity and conductivity values for several Al2O3-SiC whisker composites were determined. The thermal diffusivity values spanned the range from 373 to 1473 K, and thermal conductivity data wre obtained between 305 and 365 K. The thermal diffusivity decreased with increasing temperature and increased with SiC-whisker content. An estimate of the thermal conductivity of the whiskers was obtained from the direct thermal conductivity measurements, but attempts to derive whisker conductivity values from the thermal diffusivity data were not successful because the laser flash method lacks the required accuracy and precision. Specimens were subjected to two different thermal quench experiments to investigate the effect of thermal history on diffusivity. In the most severe case, multiple 1073- to 373-K quenches, radial cracks were observed in the test specimens; however, there was no change in diffusivity. The lack of sensitivity to thermal cycling appears to be related to the sample size.  相似文献   

13.
Combustion Synthesis of Silicon Nitride-Silicon Carbide Composites   总被引:2,自引:0,他引:2  
The feasibility of synthesizing silicon nitride-silicon carbide composites by self-propagating high-temperature reactions is demonstrated. Various mixtures of silicon, silicon nitride, and carbon powders were ignited under a nitrogen pressure of 30 atm (∼ 3 MPa), to produce a wide composition range of Si3N4-SiC powder products. Products containing up to 17 vol% of SiC, after being attrition milled, could be hot-pressed to full density under 1700°C, 3000 psi (∼ 21 MPa) with 4 wt% of Y2O3. The microhardness and fracture toughness of these composites were superior to those of the pure β-Si3N4 matrix material and compared very well with the properties of "traditionally" prepared composites.  相似文献   

14.
Model laminated composites were fabricated with porous-Al2O3 interfaces between SiC bars. The porous Al2O3 was deposited using an aerosol spray deposition technique, and the sandwich specimen was fabricated by hot pressing. Residual thermal stresses were present in the interface because of the difference in the coefficients of thermal expansion of SiC and Al2O3. Crack deflection was observed with measured interfacial fracture resistances that were considerably higher than the deflection threshold predicted by the He–Hutchinson criterion. Examination of the fracture surface revealed a tortuous crack path and significant crack–flaw interaction.  相似文献   

15.
Si3N4 matrix composites reinforced by SiC whiskers, SiC particles, or both were fabricated using the hot-pressing technique. The mechanical properties of the composites containing various amounts of these SiC reinforcing materials and different sizes of SiC particles were investigated. Fracture toughness of the composites was significantly improved by introducing SiC whiskers and particles together, compared with that obtained by adding SiC whiskers or SiC particles alone. On increasing the size of the added SiC particles, the fracture toughness of the composites reinforced by both whiskers and particles was increased. Their fracture toughness also showed a strong dependence on the amount of SiC particles (average size 40 μm) and was a maximum at the particle content of 10 vol%. The maximum fracture toughness of these composites was 10.5 MPa·m1/2 and the flexural strength was 550 MPa after addition of 20 vol% of SiC whiskers and 10 vol% of SiC particles having an average particle size of 40 μm. These mechanical properties were almost constant from room temperature to temperatures around 1000°C. Fracture surface observations revealed that the reinforcing mechanisms acting in these composites were crack deflection and crack branching by SiC particles and pullout of SiC whiskers.  相似文献   

16.
Crack Healing Behavior of Silicon Carbide Ceramics   总被引:1,自引:0,他引:1  
This study focuses on the crack healing behavior of three kinds of commercial SiC ceramics. Specimens with and without cracks were subjected to thermal treatment at different temperatures, and their strengths were measured by a three-point bending test in accordance with JIS standards. The tests were performed in air at both room temperature and elevated temperatures between 600° and 1500°C. The healed specimens showed a complete recovery of strength at room temperature for the investigated crack sizes of 2 c ≅ 100 μm and 2 c ≅ 200 μm, and their strength increased in accordance with the healing temperature. The behavior of the healed specimens at elevated temperatures was influenced by the material used and the test temperature. Generally, the strength decreased at a high temperature, but the degree of strength reduction was determined by the kind of ceramic. The most important difference between the healed and smooth specimens was exhibited in material A. It was observed that at 1400°C, the bending strength of the healed specimens made from this ceramic was about 37% of the value for specimens in an as-received state. Static fatigue tests were also performed for ceramic B at 900° and 1000°C. The experiment demonstrated that the static fatigue limit of a healed specimen is about 75% of the monotonic bending strength at the same temperature.  相似文献   

17.
α-SiC single crystals were compressed parallel to the basal plane, (0001), at temperatures between 900° and 1500°C. Plastic deformation by slip on the basal planes which accompanied kinking occurred above 1000°C. At kink boundaries, two kinds of cracks were observed. One was the cracks elongated parallel to the basal plane. This kind of crack was initiated by the tensile stress produced by piled-up dislocations on the basal planes against a kink boundary. The other was on a kink boundary, and was induced by the stress of dislocations, heterogeneously distributed on the kink boundary. The initiation of cracks produced by dislocations was considered to be a possible cause of fracture in polycrystalline SiC at high temperatures.  相似文献   

18.
Mullite-SiC-whisker composites were prepared by powder processing using two commercial SiC whiskers. These composites were prepared by sintering rather than hot-pressing. A mulliteSlC-powder composite and a base line mallite material were also prepared for comparison with the two whisker composite materials. Fracture toughness measurements showed significant enhancement in only one of the whisker composite materials. The microstructure of the four materials was examined by scanning electron microscopy and transmission electron microscopy to assist in the explanation of the mechanical behavior of these composites. The examinations suggested that most of the toughening results from second-phase particles, with only limited toughening from effects associated with whiskers per se. In one case, higher toughness was partially associated with the formation of sialon phase by reaction with the whiskers and the furnace environment.  相似文献   

19.
The strength, S , of ceramic and glass fibers often can be estimated from fractographic investigation using the fracture mirror radius, r m, and the relationship S = A m/( r m)1/2, where A mis the "mirror constant." The present work estimates the value of A mfor Tyranno® Si-Ti-C-O fibers in situ in a three-dimensional woven SiC/SiC-based composite to be 2.50 ± 0.09 MPa·m1/2. This value is within the range of 2–2.51 MPa·m1/2 previously obtained for nominally similar Nicalon® Si-C-O fibers.  相似文献   

20.
A new ceramic joining technique has been developed that utilizes an exothermic combustion reaction to simultaneously synthesize the joint interlayer material and to bond together the ceramic workpieces. The method has been used to join SiC/SiC composites and dense SiC ceramics using TiC-Ni powder mixtures that ignite below 1200°C to form a TiC-Ni joining material. Thin layers of the powder reactants were prepared by tape casting, and joining was accomplished by heating in a hot-press to ignite the combustion reaction. During this process, localized exothermic heating of the joint region resulted in chemical interaction at the interface between the TiC-Ni and the SiC ceramic that contributed to bonding. Room-temperature four-point bending strengths of joints produced by this method have exceeded 100 MPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号