首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enhanced Fuzzy System Models With Improved Fuzzy Clustering Algorithm   总被引:2,自引:0,他引:2  
Although traditional fuzzy models have proven to have high capacity of approximating the real-world systems, they have some challenges, such as computational complexity, optimization problems, subjectivity, etc. In order to solve some of these problems, this paper proposes a new fuzzy system modeling approach based on improved fuzzy functions to model systems with continuous output variable. The new modeling approach introduces three features: i) an improved fuzzy clustering (IFC) algorithm, ii) a new structure identification algorithm, and iii) a nonparametric inference engine. The IFC algorithm yields simultaneous estimates of parameters of c-regression models, together with fuzzy c-partitioning of the data, to calculate improved membership values with a new membership function. The structure identification of the new approach utilizes IFC, instead of standard fuzzy c-means clustering algorithm, to fuzzy partition the data, and it uses improved membership values as additional input variables along with the original scalar input variables for two different choices of regression methods: least squares estimation or support vector regression, to determine ldquofuzzy functionsrdquo for each cluster. With novel IFC, one could learn the system behavior more accurately compared to other FSM models. The nonparametric inference engine is a new approach, which uses the alike -nearest neighbor method for reasoning. Empirical comparisons indicate that the proposed approach yields comparable or better accuracy than fuzzy or neuro-fuzzy models based on fuzzy rules bases, as well as other soft computing methods.  相似文献   

2.
We propose a novel architecture for a higher order fuzzy inference system (FIS) and develop a learning algorithm to build the FIS. The consequent part of the proposed FIS is expressed as a nonlinear combination of the input variables, which can be obtained by introducing an implicit mapping from the input space to a high dimensional feature space. The proposed learning algorithm consists of two phases. In the first phase, the antecedent fuzzy sets are estimated by the kernel-based fuzzy c-means clustering. In the second phase, the consequent parameters are identified by support vector machine whose kernel function is constructed by fuzzy membership functions and the Gaussian kernel. The performance of the proposed model is verified through several numerical examples generally used in fuzzy modeling. Comparative analysis shows that, compared with the zero-order fuzzy model, first-order fuzzy model, and polynomial fuzzy model, the proposed model exhibits higher accuracy, better generalization performance, and satisfactory robustness.  相似文献   

3.
This paper presents a new type-2 fuzzy logic system model for desulphurization process of a real steel industry in Canada. The type-2 fuzzy logic system permits us to model rule uncertainties where every membership value of an element has a second order membership value of its own. In this paper, we propose an indirect method to create second order membership grades that are amplitudes of type-2 secondary membership functions, where the primary memberships are extracted by implementation of fuzzy clustering approach. In this research, Gaussian Mixture Model (GMM) is used for the creation of second order membership grades. Furthermore, a reduction scheme is implemented which results in type-1 membership grades. In turn, this leads to a reduction of the complexity of the system. Two methods are used for the estimation of the membership functions: indirect and direct methods. In the indirect method, the system uses an interpolation scheme for the estimation of the most appropriate membership functions. In the direct method, the system is tuned by an inference algorithm for the optimization of the main parametric system. In this case, the parameters are: Schweizer and Sklar t-norm and s-norm, combination of FATI and FITA inference approaches, and Yager defuzzification. Finally, the system model is applied to the desulphurization process of a real steel industry in Canada. It is shown that the proposed type-2 fuzzy logic system is superior in comparison to multiple regression and type-1 fuzzy logic systems in terms of robustness, and error reduction.  相似文献   

4.
5.
Earlier clustering techniques such as the modified learning vector quantization (MLVQ) and the fuzzy Kohonen partitioning (FKP) techniques have focused on the derivation of a certain set of parameters so as to define the fuzzy sets in terms of an algebraic function. The fuzzy membership functions thus generated are uniform, normal, and convex. Since any irregular training data is clustered into uniform fuzzy sets (Gaussian, triangular, or trapezoidal), the clustering may not be exact and some amount of information may be lost. In this paper, two clustering techniques using a Kohonen-like self-organizing neural network architecture, namely, the unsupervised discrete clustering technique (UDCT) and the supervised discrete clustering technique (SDCT), are proposed. The UDCT and SDCT algorithms reduce this data loss by introducing nonuniform, normal fuzzy sets that are not necessarily convex. The training data range is divided into discrete points at equal intervals, and the membership value corresponding to each discrete point is generated. Hence, the fuzzy sets obtained contain pairs of values, each pair corresponding to a discrete point and its membership grade. Thus, it can be argued that fuzzy membership functions generated using this kind of a discrete methodology provide a more accurate representation of the actual input data. This fact has been demonstrated by comparing the membership functions generated by the UDCT and SDCT algorithms against those generated by the MLVQ, FKP, and pseudofuzzy Kohonen partitioning (PFKP) algorithms. In addition to these clustering techniques, a novel pattern classifying network called the Yager fuzzy neural network (FNN) is proposed in this paper. This network corresponds completely to the Yager inference rule and exhibits remarkable generalization abilities. A modified version of the pseudo-outer product (POP)-Yager FNN called the modified Yager FNN is introduced that eliminates the drawbacks of the earlier network and yi- elds superior performance. Extensive experiments have been conducted to test the effectiveness of these two networks, using various clustering algorithms. It follows that the SDCT and UDCT clustering algorithms are particularly suited to networks based on the Yager inference rule.  相似文献   

6.
为了准确并及时地发现高速公路上的交通事故隐患,减少事故引发的交通延迟,提高高速公路运行安全性,结合减法聚类与模糊C均值(FCM)聚类算法对输入样本数据进行聚类,建成初始模糊推理系统,然后通过神经网络的自学习机制,训练模糊系统参数,确定模糊推理规则,建立最终模糊模型。通过仿真实验结果对比,验证了基于改进模糊聚类与自适应神经模糊推理系统(ANFIS)建模方法的有效性。  相似文献   

7.
基于直觉模糊推理的威胁评估改进算法   总被引:2,自引:0,他引:2       下载免费PDF全文
针对实战系统中的威胁评估问题,提出一种基于直觉模糊推理的改进算法。设计系统状态变量的三角型隶属度和非隶属度函数,给出详细的计算步骤,将包含可信度的推理规则植入评估系统,当系统有输入时,即可进行威胁评估值的直觉模糊推理计算。实战数据仿真结果证明了该算法的有效性。  相似文献   

8.
Fuzzy functions with support vector machines   总被引:1,自引:0,他引:1  
A new fuzzy system modeling (FSM) approach that identifies the fuzzy functions using support vector machines (SVM) is proposed. This new approach is structurally different from the fuzzy rule base approaches and fuzzy regression methods. It is a new alternate version of the earlier FSM with fuzzy functions approaches. SVM is applied to determine the support vectors for each fuzzy cluster obtained by fuzzy c-means (FCM) clustering algorithm. Original input variables, the membership values obtained from the FCM together with their transformations form a new augmented set of input variables. The performance of the proposed system modeling approach is compared to previous fuzzy functions approaches, standard SVM, LSE methods using an artificial sparse dataset and a real-life non-sparse dataset. The results indicate that the proposed fuzzy functions with support vector machines approach is a feasible and stable method for regression problems and results in higher performances than the classical statistical methods.  相似文献   

9.
基于改进型模糊聚类的模糊系统建模方法   总被引:8,自引:1,他引:8       下载免费PDF全文
结合减法聚类和模糊C均值聚类,提出了一种改进型聚类算法,加快了收敛速度.利用改进后的算法对模糊系统输入或输出的样本集聚类,对聚类结果采用Trust-Region法拟合高斯型和S型函数,以实现模糊系统输入、输出空间的划分和隶属度函数参数的确定.结合MATLAB的模糊和曲线拟合工具箱,详述了如何在标准算法上进行改进和模糊系统建模.通过对IRIS标准数据聚类实验以及在解决机械加工误差复映问题上的应用,验证了改进后算法和建模方法的有效性.  相似文献   

10.
Fuzzy neural controllers have the advantages of ease for knowledge expression and the ability of self-learning, and are able to control adaptively by updating the fuzzy rules and the membership functions. Nevertheless, the long training time usually discourages their practical applications in industry and the parameters over-updating may make system oscillate extensively. In this paper, a new strategy for optimizing the parameters updating algorithm of fuzzy neural controller is proposed. The only effect of parameters which affects the control performance significantly are updated. Also, based on fuzzy inference, the updating step is adjusted adaptively in accordance with the error and the change of error of the system. Two examples are simulated in order to conform the effectiveness and applicability of the strategy proposed in this paper.  相似文献   

11.
In this paper, fuzzy inference models for pattern classifications have been developed and fuzzy inference networks based on these models are proposed. Most of the existing fuzzy rule-based systems have difficulties in deriving inference rules and membership functions directly from training data. Rules and membership functions are obtained from experts. Some approaches use backpropagation (BP) type learning algorithms to learn the parameters of membership functions from training data. However, BP algorithms take a long time to converge and they require an advanced setting of the number of inference rules. The work to determine the number of inference rules demands lots of experiences from the designer. In this paper, self-organizing learning algorithms are proposed for the fuzzy inference networks. In the proposed learning algorithms, the number of inference rules and the membership functions in the inference rules will be automatically determined during the training procedure. The learning speed is fast. The proposed fuzzy inference network (FIN) classifiers possess both the structure and the learning ability of neural networks, and the fuzzy classification ability of fuzzy algorithms. Simulation results on fuzzy classification of two-dimensional data are presented and compared with those of the fuzzy ARTMAP. The proposed fuzzy inference networks perform better than the fuzzy ARTMAP and need less training samples.  相似文献   

12.
This paper suggests a synergy of fuzzy logic and nature-inspired optimization in terms of the nature-inspired optimal tuning of the input membership functions of a class of Takagi-Sugeno-Kang (TSK) fuzzy models dedicated to Anti-lock Braking Systems (ABSs). A set of TSK fuzzy models is proposed by a novel fuzzy modeling approach for ABSs. The fuzzy modeling approach starts with the derivation of a set of local state-space models of the nonlinear ABS process by the linearization of the first-principle process model at ten operating points. The TSK fuzzy model structure and the initial TSK fuzzy models are obtained by the modal equivalence principle in terms of placing the local state-space models in the rule consequents of the TSK fuzzy models. An operating point selection algorithm to guide modeling is proposed, formulated on the basis of ranking the operating points according to their importance factors, and inserted in the third step of the fuzzy modeling approach. The optimization problems are defined such that to minimize the objective functions expressed as the average of squared modeling errors over the time horizon, and the variables of these functions are a part of the parameters of the input membership functions. Two representative nature-inspired algorithms, namely a Simulated Annealing (SA) algorithm and a Particle Swarm Optimization (PSO) algorithm, are implemented to solve the optimization problems and to obtain optimal TSK fuzzy models. The validation and the comparison of SA and PSO and of the new TSK fuzzy models are carried out for an ABS laboratory equipment. The real-time experimental results highlight that the optimized TSK fuzzy models are simple and consistent with both training data and validation data and that these models outperform the initial TSK fuzzy models.  相似文献   

13.
As the applications of fuzzy-controllers become more complicated, the attributes of self-organization and trainability become increasingly important. Indeed, the specification of fuzzy rules and membership functions for systems with a large number of state variables is extremely difficult. This paper introduces a new class of self-organizing and trainable fuzzy-controllers that can be designed without specific information regarding either the membership functions or the fuzzy rules. The proposed controller derives the fuzzy rules from clusters formed in the input space, through a self-organizing process. The clustering is performed through a simple method which can adaptively allocate new clusters as more date are available to the controller. Then, the membership values of crisp inputs are determined by K-nearest-neighbor (KNN) distance measures applied to the centers of the input clusters. Finally, a KNN defuzzification processes directly estimates of the crisp output of unknown input data. An adaptation procedure for the center vector of each cluster and the corresponding output value is developed. The overall design is analyzed in terms of the existence and the uniqueness of the solution of the proposed model. The performance of the proposed controller is considered through the modeling of the Mackey—Glass time-series.  相似文献   

14.
Occupational risk assessment is a key measure to reach safety in construction industries. The assessment process is involved with many parameters which are difficult to assess, due to inadequate data or imprecise information. So, traditional quantitative approaches fail, frequently, to assess risk levels and to identify adequate preventive measures. A Takagi-Sugeno type fuzzy inference system is developed in this article to overcome these lacunas. In the model formulation process, the risk factors and controlling factors for accidental injuries are considered as input parameters. Safety levels of each type of injury prone body parts are evaluated by using analytical hierarchy process. Subtractive clustering technique is used to reduce the number of rules and thereby an initial fuzzy inference system is generated. Finally, the initial model is updated by tuning all the parameters corresponding to the input variables using a hybrid learning process. The developed methodology has been applied to few selected construction sites in India. The derived results validate the applicability of the developed model for assessing risks in construction sites and also identifies the pertinent progress of existing safety strategies.  相似文献   

15.
In this paper, we introduce and investigate a new category of fuzzy inference systems based on information granulation and genetic optimization used to system identification. We show the applications of such systems to identification of nonlinear systems. The formal framework of information granulation and resulting information granules themselves become an important design facet of the fuzzy models. By embracing fuzzy sets, the model is geared towards capturing essential relationship between information granules rather than concentrating on plain numeric data. Information granulation realized with the use of the commonly exploited C-Means clustering helps determine the initial values of the parameters of the fuzzy models. This in particular concerns such essential components of the rules as the initial apexes of the membership functions standing in the premise part of the fuzzy rules and the points of the polynomial functions standing in the consequence part. The initial apexes (center points) of the membership functions based on C-Means algorithm are tuned with the aid of the genetic algorithm (GA), while the tuned apexes are also used to adjust the points of the consequent polynomials (conclusions) of the rules. In particular, the initial apexes of the membership functions and the initial points of the consequent polynomials are adjusted and updated every time through successive evolution process. The overall design methodology involves a hybrid structural and parametric optimization. Genetic algorithms and C-Means clustering are used to optimize the model with respect to its structure and parameters. To determine the structure and estimate the values of the parameters of the fuzzy model we consider the successive tuning method with generation-based evolution by means of genetic algorithms. The model is evaluated with the use of numerical experimentation and its quality is compared with respect to some other fuzzy models already encountered in the literature.  相似文献   

16.
This work proposes a unified neurofuzzy modelling scheme. To begin with, the initial fuzzy base construction method is based on fuzzy clustering utilising a Gaussian mixture model (GMM) combined with the analysis of covariance (ANOVA) decomposition in order to obtain more compact univariate and bivariate membership functions over the subspaces of the input features. The mean and covariance of the Gaussian membership functions are found by the expectation maximisation (EM) algorithm with the merit of revealing the underlying density distribution of system inputs. The resultant set of membership functions forms the basis of the generalised fuzzy model (GFM) inference engine. The model structure and parameters of this neurofuzzy model are identified via the supervised subspace orthogonal least square (OLS) learning. Finally, instead of providing deterministic class label as model output by convention, a logistic regression model is applied to present the classifier’s output, in which the sigmoid type of logistic transfer function scales the outputs of the neurofuzzy model to the class probability. Experimental validation results are presented to demonstrate the effectiveness of the proposed neurofuzzy modelling scheme.  相似文献   

17.
Fuzzy system has been known to provide a framework for handling uncertainties and imprecision by taking linguistic information from human experts. However, difficulties arise in determining effectively the fuzzy system configuration, i.e., the number of rules, input and output membership functions. A neuro‐fuzzy system design methodology by combining neural network and fuzzy logic is developed in this paper to adaptively adjust the fuzzy membership functions and dynamically optimize the linguistic‐fuzzy rules. The structure of a five‐layer feedforward network is shown to determine systematically the correct fuzzy logic rules, tune optimally (in the sense of local region) the parameters of the membership functions, and perform accurately the fuzzy inference. It is shown both numerically and experimentally that engineering applications of the neuro‐fuzzy system to vibration control have been very successful.  相似文献   

18.
“Fuzzy Functions” are proposed to be determined by the least squares estimation (LSE) technique for the development of fuzzy system models. These functions, “Fuzzy Functions with LSE” are proposed as alternate representation and reasoning schemas to the fuzzy rule base approaches. These “Fuzzy Functions” can be more easily obtained and implemented by those who are not familiar with an in-depth knowledge of fuzzy theory. Working knowledge of a fuzzy clustering algorithm such as FCM or its variations would be sufficient to obtain membership values of input vectors. The membership values together with scalar input variables are then used by the LSE technique to determine “Fuzzy Functions” for each cluster identified by FCM. These functions are different from “Fuzzy Rule Base” approaches as well as “Fuzzy Regression” approaches. Various transformations of the membership values are included as new variables in addition to original selected scalar input variables; and at times, a logistic transformation of non-scalar original selected input variables may also be included as a new variable. A comparison of “Fuzzy Functions-LSE” with Ordinary Least Squares Estimation (OLSE)” approach show that “Fuzzy Function-LSE” provide better results in the order of 10% or better with respect to RMSE measure for both training and test cases of data sets.  相似文献   

19.
Sung-Kwun  Seok-Beom  Witold  Tae-Chon   《Neurocomputing》2007,70(16-18):2783
In this study, we introduce and investigate a new topology of fuzzy-neural networks—fuzzy polynomial neural networks (FPNN) that is based on a genetically optimized multiplayer perceptron with fuzzy set-based polynomial neurons (FSPNs). We also develop a comprehensive design methodology involving mechanisms of genetic optimization and information granulation. In the sequel, the genetically optimized FPNN (gFPNN) is formed with the use of fuzzy set-based polynomial neurons (FSPNs) composed of fuzzy set-based rules through the process of information granulation. This granulation is realized with the aid of the C-means clustering (C-Means). The design procedure applied in the construction of each layer of an FPNN deals with its structural optimization involving the selection of the most suitable nodes (or FSPNs) with specific local characteristics (such as the number of input variable, the order of the polynomial, the number of membership functions, and a collection of specific subset of input variables) and address main aspects of parametric optimization. Along this line, two general optimization mechanisms are explored. The structural optimization is realized via genetic algorithms (GAs) and HCM method whereas in case of the parametric optimization we proceed with a standard least square estimation (learning). Through the consecutive process of structural and parametric optimization, a flexible neural network is generated in a dynamic fashion. The performance of the designed networks is quantified through experimentation where we use two modeling benchmarks already commonly utilized within the area of fuzzy or neurofuzzy modeling.  相似文献   

20.
Availability of only limited or sparse experimental data impedes the ability of current models of chemical mechanical planarization (CMP) to accurately capture and predict the underlying complex chemomechanical interactions. Modeling approaches that can effectively interpret such data are therefore necessary. In this paper, a new approach to predict the material removal rate (MRR) and within wafer nonuniformity (WIWNU) in CMP of silicon wafers using sparse-data sets is presented. The approach involves utilization of an adaptive neuro-fuzzy inference system (ANFIS) based on subtractive clustering (SC) of the input parameter space. Linear statistical models were used to assess the relative significance of process input parameters and their interactions. Substantial improvements in predicting CMP behaviors under sparse-data conditions can be achieved from fine-tuning membership functions of statistically less significant input parameters. The approach was also found to perform better than alternative neural network (NN) and neuro-fuzzy modeling methods for capturing the complex relationships that connect the machine and material parameters in CMP with MRR and WIWNU, as well as for predicting MRR and WIWNU in CMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号