首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The static fracture toughness of EUROFER 97 reduced activation ferritic-martensitic steel was investigated in presence of higher content of hydrogen. The hydrogen effect is shown during fracture toughness testing both of base and weld metals at room temperature and at 120 °C. At the room temperature testing the J0.2 integral values will decrease depending on hydrogen content in the range of 2-4 wppm. The same hydrogen content of 2 wppm manifests itself by an uneven level of hydrogen embrittlement for base metal and weld metal. This corresponds to a different J0.2 integral value and a different mechanism of fracture mode. At the hydrogen content of 4 wppm more evident decrease of J0.2 was observed for both metals. At 120 °C hydrogen decreases J0.2 integral in base metal at a limited scale only in comparison to weld metal. At room temperature and hydrogen content of about 4 wppm the base metal specimen exhibits inter-granular fracture and trans-granular cleavage on practically the whole crack surface. The weld metal fracture has shown inter-granular and trans-granular mechanism with ductile and dimple rupture.  相似文献   

2.
Quasistatic fracture behaviour of two heats of modified 9Cr–1Mo steel for steam generator applications have been assessed at 298, 653 and 823 K. JR curves were established and the elastic–plastic fracture toughness values at 0.2 mm crack extension (J0.2) were determined. The fracture mechanisms were entirely different for the two steels at 298 K, with brittle fracture controlled by cleavage crack initiation in one and ductile fracture in the other by void nucleation and growth. At 653 and 823 K, fracture in both materials was by ductile crack growth. The difference in behaviour between the two steels at 298 K was attributed to the differences in microstructure, distribution and density of inclusions as well as phosphorous contents.  相似文献   

3.
Ontario Hydro has developed a leak-before-break (LBB) methodology for application to large diameter piping (21, 22 and 24 inch) Schedule 100 SA106B heat transport (HT) piping as a design alternative to pipe whip restraints and in recognition of the questionable benefits of providing such devices. Ontario Hydro's LBB approach uses elastic-plastic fracture mechanics (EPFM).In order to assess the stability of HT piping in the presence of hypothetical flaws, the value of the material J-integral associated with crack extension (JR curve) must be known. In a material test program J-resistance curves were determined from various pipe heats and four different welding procedures that were developed by Ontario Hydro for nuclear Class 1 piping. The test program was designed to investigate and quantify the effect of various factors such as test temperature, crack plane orientation and welding effects which have an influence on fracture properties. An acceptable lower bound J-resistance curve for the piping steels and welds were obtained by machining maximum thickness specimens from the pipes and weldments and by testing side-grooved compact tension specimens. This paper addresses the effect of test temperature and post-weld heat treatment on the J-resistance curves from the welds.The fracture toughness of all the welds at 250°C was lower than that at 20°C. Welds that were post-weld heat treated showed high crack initiation toughness, Jlc, rising J-resistance curves and stable and ductible crack extension. Non post-weld heat treated welds, while remaining tough and ductile, showed comparatively lower JIc, and J-resistance curves at 250°C. This drop in toughness is possibly due to a dynamic strain aging mechanism evidenced by serrated load-displacement curves. The fracture toughness of non post-weld heat treated welds increased significantly after a comparable post-weld heat treatment.The test procedure was validated by comparing three test results against independent tests conducted by Materials Engineering Associates (MEA) of Lanham, Maryland. The JIc and J-resistance curves obtained by Ontario Hydro and MEA were comparable.  相似文献   

4.
The fatigue crack growth rate in the Eurofer 97 steel at room temperature was measured by two different methodologies. Small crack growth data were obtained using cylindrical specimens with a shallow notch and no artificial crack starters. The growth of semicircular cracks of length between 10-2000 μm was followed in symmetrical cycling with constant strain amplitude (Rε = −1). Long crack data were measured using standard CT specimen and ASTM methodology, i.e. = 0.1. The growth of cracks having the length in the range of 10-30 mm was measured. It is shown that the crack growth rates of both types of cracks are in a very good agreement if J-integral representation is used and usual assumptions of the crack closure effects are taken into account.  相似文献   

5.
Ductile fracture material parameters have been determined for a reactor pressure vessel material to characterize its fracture resistance in the upper shelf toughness regime. Three different methods (the multiple specimen unloading (MSU), direct current potential drop (DCPD) and single specimen partial unloading compliance (SSPUC) methods) have been applied to test different CT-specimen geometries at temperatures between 25 and 300°C.It is shown that there are principle differences between J-R-curves measured by different experimental procedures, because of different methods for the measurement of crack lengths and crack growth. For instability analyses, using a complete J-R-curve, these differences seem to be negligible. For the determination of critical material parameters at or close to initiation of stable crack growth these differences may cause systematic errors tending to higher values for DCPD as compared to MSU-results and to lower values for SSPUC respectively.Procedures can be defined to evaluate comparable critical material parameters from the different experimental procedures, if Ji is known in a good approximation allowing to consider only the real crack extension without blunting, or if in addition the real (or realistically modelled) blunting and the effective blunting of the specific method are known. The differences in material parameters will depend quantitatively on the type of material and its toughness (slope of J-R-curve). They may be in the range of the experimental scatter observed in testing and seem to be negligible, but their systematic character should be kept in mind, e.g. when ranking different materials according to their critical parameters determined by different methods.  相似文献   

6.
Uranium-cerium mixed oxides (U1−yCey)O2 (y = 0.2, 0.4, 0.6, 0.8) were prepared by combustion synthesis using citric acid as the fuel. Sintering of the solid solutions was carried out at 1873 K under reduced atmosphere. From the room temperature XRD patterns of the sintered samples it was found that the solid solutions form single phase fluorite structure. The room temperature lattice parameters of (U1−yCey)O2 (y = 0.2, 0.4, 0.6, 0.8) are 0.5458, 0.5446, 0.5434 and 0.5422 nm respectively. Thermal expansion of (U1−yCey)O2 (y = 0.2, 0.4, 0.6, 0.8) in the temperature range 298-1973 K was measured by high temperature X-ray diffraction (HTXRD). The coefficients of thermal expansion increase with increase in CeO2 content in the sample and the measured data in the temperature range 298-1973 K, for (U1−yCey)O2 (y = 0.2, 0.4, 0.6, 0.8) are 18.23, 19.91, 21.59, 23.29 × 10−6 K−1, respectively.  相似文献   

7.
J-integral fracture toughness tests were performed on welded 304 stainless steel 2-inch plate and 4-inch diameter pipe. The 2-inch plate was welded using a hot-wire automatic gas tungsten arc process. This weldment was machined into 1T and 2T compact specimens for single specimen unloading compliance J-integral tests. The specimens were cut to measure the fracure toughness of the base metal, weld metal and the heat affected zone (HAZ). The tests were performed at 550°F, 300°F and room temperature. The results of the J-integral tests indicate that the JIc of the base plate ranged from 4400 to 6100 in lbs/in2 at 550°F. The JIc values for the tests performed at 300°F and room temperature were beyond the measurement capacity of the specimens and appear to indicate that JIc was greater than 8000 in lb/in2. The J-integral tests performed on the weld metal specimens indicate that the JIc values ranged from 930 to 2150 in lbs/in2 at 550°F. The JIc values of the weld metal specimens tested at 300°F and room temperature were 2300 and 3000 in lbs/in2 respectively. One HAZ specimen was tested at 550°F and found to have a JIc value of 2980 in lbs/in2 which indicates that the HAZ is an average of the base metal and weld metal thoughness. These test results indicate that there is a significant reduction in the initiation fracture toughness as a result of welding.The second phase of this task dealt with the fracture toughness testing of 4-inch diameter 304 stainless steel pipes containing a gas tungsten arc weld. The pipes were tested at 550°F in four point bending. Three tests were performed, two with a through wall flaw growing circumferentially and the third pipe had a part through radial flaw in combination with the circumferential flaw. These tests were performed using unloading compliance and d.c. potential drop crack length estimate methods. The results of these test indicate that the presence of a complex crack (radial and circumferential) reduces in the initiation toughness and the tearing modulus of the pipe material compared to a pipe with only a circumferentially growing crack.  相似文献   

8.
The present study demonstrates the numerical prediction of experimental specimen J-R curve using Gurson-Tvergaard-Needleman phenomenologically based material model. The predicted specimen J-R curve is used to determine the geometric independent initiation fracture toughness (JSZWc) value that compares well with experimental result. Using the experimentally determined and numerically predicted JSZWc values and specimen J-R curves, the accuracy of predicting the fracture behaviour of the cracked component is judged. Thus the present study proposed a coupled phenomenological and fracture mechanics approach to predict the crack initiation and instability stages in cracked piping components using numerically predicted specimen J-R curve obtained from tensile specimens testing data.  相似文献   

9.
The paper summarizes original results of irradiation embrittlement study of EUROFER 97 material that has been proposed as one candidate of structural materials for future fusion energy systems and GEN IV.Test specimens were manufactured from base metal as well as from weld metal and tested in initial unirradiated condition and also after neutron irradiation.Irradiation embrittlement was characterized by testing of toughness properties at transition temperature region - static fracture toughness and dynamic fracture toughness properties, all in sub-size three-point bend specimens (27 × 4 × 3 mm3). Testing and evaluation was performed in accordance with ASTM and ESIS standards, fracture toughness KJC and KJd data were also evaluated with the “Master curve” approach. Moreover, J-R dependencies were determined and analyzed.The paper compares unirradiated and irradiated properties as well as changes in transition temperature shifts of these material parameters. Discussion about the correlation between static and dynamic properties is also given.Results from irradiation of EUROFER 97 show that this steel - base metal as well as weld metal - is suitable as a structural material for reactor pressure vessels of innovative nuclear systems - fusion energy systems and GEN IV. Transition temperature shifts after neutron irradiation by 2.5 dpa dose show a good agreement in the case of EUROFER 97 base material for both static and dynamic fracture toughness tests. From the results it can be concluded that there is a low sensitivity of weld metal to neutron irradiation embrittlement in comparison with EUROFER 97 base metal.  相似文献   

10.
In this work, influence of hydrogen and temperature on the fracture toughness parameters of unirradiated, cold worked and stress relieved (CWSR) Zr–2.5Nb pressure tube alloys used in Indian Pressurized Heavy Water Reactor is reported. The fracture toughness tests were carried out using 17 mm width curved compact tension specimens machined from gaseously hydrogen charged tube-sections. Metallography of the samples revealed that hydrides were predominantly oriented along axial–circumferential plane of the tube. Fracture toughness tests were carried out in the temperature range of 30–300 °C as per ASTM standard E-1820-06, with the crack length measured using direct current potential drop (DCPD) technique. The fracture toughness parameters (JQ, JMax and dJ/da), were determined. The critical crack length (CCL) for catastrophic failure was determined using a numerical method. It was observed that for a given test temperature, the fracture toughness parameters representing crack initiation (JQ) and crack propagation (JMax, and dJ/da) is practically unaffected by hydrogen content. Also, for given hydrogen content, all the aforementioned fracture toughness parameters increased with temperature to a saturation value.  相似文献   

11.
The angular distribution of the Kα hypersatellite radiation has been investigated for high-Z, helium-like ions following the K − LL dielectronic recombination of initially hydrogen-like projectiles in relativistic ion-atom collisions. A particular strong effect is found for the alignment of the 2s2p1/2J = 1 (spin-forbidden) resonance that changes sign if, in addition to the static Coulomb repulsion, the Breit interaction is taken into account for the resonant electron capture. This change in the alignment of the recombined ion also leads to a remarkable shift in the angular distribution of the subsequent 2s2p1/2J = 1 → 1s2s J = 0 Kα2 photons from a dominantly perpendicular emission to one that occurs in parallel with the ion beam, and vice versa for the 2s2p1/2J = 1 → 1s2s J = 1 line.  相似文献   

12.
Fracture toughness tests were performed in the transition region for ASTM A508 Class 3 steel using about 160 specimens. The KJ-values which are converted from Jc of the smaller specimens indicated a wide scatter ranging from below the KIc-value to much higher toughness. The fast brittle fracture behavior in the transition regime can be divided into two regions: (1) the region where fracture occurs on a blunting line (Region I) and (2) the region where fracture occurs on an R-curve (Region II). The scatter of the KJ-values in each region is caused by the amount of crack extension contained in the specimens. The methods to obtain the fracture toughness equivalent to the KIc from the KJ values were also presented.In the upper shelf region, the ductile fracture behavior of A508 Class 3 base metal and weldments was investigated. The 25% side grooved specimen was recommended for measuring the resistance against ductile crack growth. The weld heat affected zone (HAZ) has comparatively higher tearing modulus, whereas the weld metal shows the lowest one.  相似文献   

13.
Small punch test (SPT) is a miniature sample test technique which can evaluate in-service material properties with an almost non-destructive method. In this paper, the 2.25Cr1Mo steel samples serviced for 10 years in hydrogenation reactor (with temper embrittlement), 1.25Cr0.5Mo supper-pressure vapor pipe serviced for 14 years at 520 °C and several other low alloy steels have been studied by JIC fracture toughness and SPT. The linear relationship between the small punch (SP) equivalent fracture strain and the fracture toughness of JIC was created. The correlations applied to the experimental data indicated advantages of using SPT for the determining fracture toughness of in-serviced low alloy steels. Additionally, size affects the fracture pattern. Small punch samples of small size show dimple fractures whereas large fracture toughness samples show quasi-cleavage fractures.  相似文献   

14.
Tensile and fracture toughness properties of a precipitation-hardened CuCrZr alloy were investigated in two heat treatment conditions: solutionized, water quenched and aged (CuCrZr SAA), and hot isostatic pressed, solutionized, slow-cooled and aged (CuCrZr SCA). The second heat treatment simulated the manufacturing cycle for large components, and is directly relevant for the ITER divertor components. Specimens were neutron irradiated at ∼80 °C to two fluences, 2 × 1024 and 2 × 1025 n/m2 (E > 0.1 MeV), corresponding to displacement doses of 0.15 and 1.5 displacements per atom (dpa). Tensile and fracture toughness tests were carried out at room temperature. Significant irradiation hardening and plastic instability at yield occurred in both heat treatment conditions with a saturation dose of ∼0.1 dpa. Neutron irradiation slightly reduced fracture toughness in CuCrZr SAA and CuCrZr SCA. The fracture toughness of CuCrZr remained high up to 1.5 dpa (J> 200 kJ/m2) for both heat treatment conditions.  相似文献   

15.
Irradiations to 1.5 dpa at 300-750 °C were conducted to investigate the changes in mechanical properties of an advanced nanocluster strengthened ferritic alloy, designated 14YWT, and an oxide dispersion strengthened ferritic alloy ODS-EUROFER. Two non-dispersion strengthened variants, 14WT and EUROFER 97, were also irradiated and tested. Tensile results show 14YWT has very high tensile strengths and experienced some radiation-induced hardening, with an increase in room temperature yield strength of 125 MPa after irradiation, while results for ODS-EUROFER show a 275 MPa increase following irradiation. Master curve fracture toughness analysis show 14YWT has a cryogenic To reference temperatures before and after irradiation of about −188 and −176 °C, respectively, and upper-shelf KJIc values between 175 and 225 MPa√m. The favorable fracture toughness properties and resistance to radiation-induced changes in mechanical properties observed for 14YWT are attributed to a fine grain structure and high number density of Y-Ti-O nanoclusters.  相似文献   

16.
Hydrogen embrittlement is one of the major degradation mechanisms for high burnup fuel cladding during reactor service and spent fuel dry storage, which is related to the hydrogen concentration, morphology and orientation of zirconium hydrides. In this work, the J-integral values for X-specimens with different hydride orientations are measured to evaluate the fracture toughness of Zircaloy-4 (Zry-4) cladding. The toughness values for Zry-4 cladding with various percentages of radial hydrides are much smaller than those with circumferential hydrides only in the same hydrogen content level at 25 °C. The fractograghic features reveal that the crack path is influenced by the orientation of zirconium hydride. Moreover, the fracture toughness measurements for X-specimens at 300 °C are not sensitive to a variation in hydride orientation but to hydrogen concentration.  相似文献   

17.
The J-integral method cannot be applied to the elastic plastic dynamic crack propagation, because unloading and inertia force may take place. From this point of view dynamic elastic plastic scheme using J-integral is developed.Using this dynamic finite element program an MRL type specimen is analyzed. As the result, the property of path-independence of the J-integral under the existence of inertia force and unloading is confirmed. Dynamic effects are considerably small in the MRL type specimen. Also the influence of plastic zone on the crack arrest toughness is shown.Finally the present result is compared with the request of ASTM 2nd round robin test program for crack arrest toughness.  相似文献   

18.
The microstructure of a radiation-sensitive KS-01 test weld has been characterized by atom probe tomography. The levels of copper, manganese, nickel and chromium in this weld were amongst the highest of all the steels used in Western reactor pressure vessels. After neutron irradiation to a fluence of 0.8 × 1023 n m−2 (E>1 MeV) at a temperature of 288 °C, this weld exhibited a large Charpy T41J shift of 169 K, a large shift of the fracture toughness transition temperature of 160 K, a decrease in upper shelf energy from 118 to ∼78 J, and an increase in the yield strength from 600 to 826 MPa. However, the mechanical properties data conformed to the master curve. Atom probe tomography revealed a high number density (∼3 × 1024 m−3) of Cu-, Mn-, Ni-, Si- and P-enriched precipitates and a lower number density (∼1  × 1023 m−3) of P clusters.  相似文献   

19.
The main objective of this work is the study of the influence of temperature on the stability of the uranyl peroxide tetrahydrate (UO2O2 · 4H2O) studtite, which may form on the spent nuclear fuel surface as a secondary solid phase. Preliminary results on the synthesis of studtite in the laboratory at different temperatures have shown that the solid phases formed when mixing hydrogen peroxide and uranyl nitrate depends on temperature. Studtite is obtained at 298 K, meta-studtite (UO2O2 · 2H2O) at 373 K, and meta-schoepite (UO3 · nH2O, with n < 2) at 423 K. Because of the temperature effect on the stability of uranyl peroxides, a thermogravimetric (TG) study of studtite has been performed. The main results obtained are that three transformations occur depending on temperature. At 403 K, studtite transforms to meta-studtite, at 504 K, meta-studtite transforms to meta-schoepite, and, finally, at 840 K, meta-schoepite transforms to U3O8. By means of the differential scanning calorimetry the molar enthalpies of the transformations occurring at 403 and 504 K have been determined to be −42 ± 10 and −46 ± 2 kJ mol−1, respectively.  相似文献   

20.
The on-heating phase transformation temperatures up to the melting regime and the specific heat capacity of a reduced activation ferritic-martensitic steel (RAFM) with a nominal composition (wt%): 9Cr-0.09C-0.56Mn-0.23V-1W-0.063Ta-0.02N, have been measured using high temperature differential scanning calorimetry. The α-ferrite + carbides → γ-austenite transformation start and finish temperatures, namely Ac1, and Ac3, are found to be 1104 and 1144 K, respectively for a typical normalized and tempered microstructure. It is also observed that the martensite start (MS) and finish (Mf) temperatures are sensitive to the austenitising conditions. Typical MS and Mf values for the 1273 K normalized and 1033 K tempered samples are of the order 714 and 614 K, respectively. The heat capacity CP of the RAFM steel has been measured in the temperature range 473-1273 K, for different normalized and tempered samples. In essence, it is found that the CP of the fully martensitic microstructure is found to be lower than that of its tempered counterpart, and this difference begins to increase in an appreciable manner from about 800 K. The heat capacity of the normalized microstructure is found to vary from 480 to 500 J kg−1 K−1 at 500 K, where as that of the tempered steel is found to be higher by about, 150 J kg−1 K−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号