首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two types of porous plasma spray tungsten coatings deposited onto stainless steel and graphite substrates were exposed to low-energy (76 eV ), high-flux (1022 D/m2 s) D plasma to ion fluences of (3-4) × 1026 D/m2 at various temperatures. Deuterium retention in the W coatings was examined by thermal desorption spectroscopy and the D(3He,p)4He nuclear reaction, allowing determination of the D concentration at depths up to 7 μm. The relatively high D concentration (above 0.1 at.%) at depths of several micrometers observed after D plasma exposure at 340-560 K can be related to accumulation of D2 molecules in pores, while at temperatures above 600 K deuterium is accumulated mainly in the form of D atoms chemisorbed on the inner pore surfaces. At exposure temperatures above 500 K, the D retention in the plasma spray W coating on graphite substrate increases significantly due to trapping of diffusing D atoms at carbon dangling bonds located at the edge of a graphite crystallite.  相似文献   

2.
Depth profiles of deuterium trapped in tungsten exposed to a low-energy (≈200 eV/D) and high deuterium ion flux (about 1 × 1021 D/m2 s) in clean (We use the term ‘clean’ in quotation marks having in mind the impossibility to obtain absolutely clean plasma. In our case the conception ‘clean’ D plasma means the plasma without intentionally introduced carbon impurities.) and carbon-seeded D plasmas at an ion fluence of about 2 × 1024 D/m2 and various temperatures have been measured up to a depth of 7 μm using the D(3He, p)4He nuclear reaction at a 3He energy varied from 0.69 to 4.0 MeV. The deuterium retention in single-crystalline and polycrystalline W increases with the exposure temperature, reaching its maximum value at about 500 K (for ‘clean’ plasma) or about 600 K (for carbon-seeded plasma), and then decreases as the temperature grows further. It is assumed that tungsten carbide formed on the W surface under exposure to the carbon-seeded D plasmas serves as a barrier layer for diffusion and prevents the outward transport of deuterium, thus increasing the D retention in the bulk of tungsten.  相似文献   

3.
The surface topography and optical properties of recrystallized tungsten exposed to a low-energy (38 eV/D), high flux (1022 D/ms) deuterium plasma with an ion fluence of 1026 D/m2 at various temperatures was investigated. It was found that the surface morphology weakly depends on the exposure temperature in the range 320-695 K with the exception of the narrow temperature region around 535 K, where large changes to all optical characteristics occurs. After plasma exposure at this temperature, the surface topography of the W sample is characterized by active blistering as has already been indicated in previous publications. The reflectance found in direct measurements at normal incidence drops in the wavelength interval 220-650 nm, whereas the estimations of reflectance using the ellipsometry data demonstrate some increase.  相似文献   

4.
Depth profiles of deuterium up to a depth of 10 μm have been measured using the D(3He,p)4He nuclear reaction in a resonance-like technique after exposure of sintered boron carbide, B4C, at elevated temperatures to a low energy (≈200 eV/D) and high ion flux (≈1021 m−2 s−1) D plasma. The proton yield was measured as a function of incident 3He energy and the D depth profile was obtained by deconvolution of the measured proton yields using the program SIMNRA. D atoms diffuse into the bulk at temperatures above 553 K, and accumulate up to a maximum concentration of about 0.2 at.%. At high fluences (?1024 D/m2), the accumulation in the bulk plays a major role in the D retention. With increasing exposure temperature, the amount of D retained in B4C increases and exceeds a value of 2 × 1021 D/m2 at 923 K. The deuterium diffusivity in the sintered boron carbide is estimated to be D = 2.6 × 10−6exp{−(107 ± 10) kJ mol−1/RT} m2 s−1.  相似文献   

5.
Previous investigations of tungsten for the International Thermonuclear Experimental Reactor (ITER) were focusing on using energetic ion beams whose energies were over 1 keV. This study presents experimental results of exposed W–1% La2O3 in high ion flux (1022 m–2), low ion energies (about 110 eV) steady-state deuterium plasmas at elevated temperatures (873–1250 K). The tungsten samples are floating during plasma exposure. Using a high-pressure gas analyzer, the residual carbon impurities in the plasma are found to be about 0.25%. No carbon film is detected on the surface by the EDX analysis after plasma exposure. An infrared pyrometer is also used as an in situ detector to monitor the surface emissivities of the substrates during plasma exposure. Using the scanning electron microscopy, microscopic pits of sizes ranging from 0.1 to 5 μm are observed on the plasma exposed tungsten surfaces. These pits are believed to be the results of erupted deuterium gas bubbles, which recombine underneath the surface at defect locations and grain boundaries, leading to substrate damage and erosion loss of the substrate material. Low temperature plasma exposure of a tungsten foil indicates that deuterium gas (D2) is trapped inside the substrate. Macroscopic blisters are observed on the surface. The erosion yield of the W–1% La2O3 increases with temperature and seems to saturate at around 1050 K. Scattered networks of bubble sites are found 5 μm below the substrate surface. High temperature plasma exposure appears to reduce the population as well as the size of the pits. The plasma exposed W–1% La2O3 substrates, exposed above 850 K, retain about 1019 D/m2, which is two orders of magnitude less than those retained by the tungsten foils exposed at 400 K.  相似文献   

6.
The thermal conductivities of (U,Pu,Np)O2 solid solutions were studied at temperatures from 900 to 1770 K. Thermal conductivities were obtained from the thermal diffusivity measured by the laser flash method. The thermal conductivities obtained below 1400 K were analyzed with the data of (U,Pu,Am)O2 obtained previously, assuming that the B-value was constant, and could be expressed by a classical phonon transport model, λ = (A + BT)−1, A(z1, z2) = 3.583 × 10−1 × z1 + 6.317 × 10−2 × z2 + 1.595 × 10−2 (m K/W) and B = 2.493 × 10−4 (m/W), where z1 and z2 are the contents of Am- and Np-oxides. It was found that the A-values increased linearly with increasing Np- and Am-oxide contents slightly, and the effect of Np-oxide content on A-values was smaller than that of Am-oxide content. The results obtained from the theoretical calculation based on the classical phonon transport model showed good agreement with the experimental results.  相似文献   

7.
Surface topography and deuterium retention in polycrystalline ITER-grade tungsten have been examined after exposure to a low-energy (38 eV/D), high-flux (1022 D/m2 s) deuterium plasma with ion fluences of 1026 and 1027 D/m2 at various temperatures. The methods used were scanning electron microscopy equipped with focused ion beam, thermal desorption spectroscopy, and the D(3He,p) 4He nuclear reaction at 3He energies varied from 0.69 to 4.0 MeV. During exposure to the D plasma at temperatures in the range from 320 to 815 K, small blisters of size in the range from 0.2 to 5 μm, depending on the exposure temperature and ion fluence, are formed on the W surface. At an ion fluence of 1027 D/m2, the deuterium retention increases with the exposure temperature, reaching its maximum value of about 1022 D/m2 at 500 K, and then decreases below 1019 D/m2 at 800 K.  相似文献   

8.
Most of spherical blisters formed by deuterium (D) bombardment (38 eV/D) up to 3 × 1024 D/m2 at 300 K on polycrystalline tungsten are fully elastic deformations. This has been proven by opening individual blisters with a focused ion beam and in situ observation of their complete relaxation by scanning electron microscopy. The D2 gas filling is confirmed by observing simultaneously the D2 puff. The gas pressure is causal for the stability of such spherical blisters after implantation and the gas release leads to sudden relaxation. The dilatation of the blister cap by trapped D can be excluded as cause for the blisters.  相似文献   

9.
Changes in the composition and crystalline structure of gasochromic tungsten oxide films resulting from the incorporation of hydrogen were investigated; the oxide films were prepared by reactive RF magnetron sputtering on SiO2 and glassy carbon substrates simultaneously. X-ray diffraction analysis of the deposited films at 600 °C showed a uniaxial oriented structure in the (0 1 0) plane of monoclinic WO3 for both substrates. The elastic recoil detection analysis (ERDA) and Rutherford backscattering spectroscopy (RBS) for the films on glassy carbon revealed that the hydrogen impurity was uniformly distributed up to a concentration of 0.24 H/W. The Pd-coated films on SiO2 turned blue when they were exposed to a mixture of Ar and 5% H2 gases. When the sample became colored, the hydrogen concentration in the film increased to 0.47 H/W and the crystalline structure of the film changed from monoclinic to tetragonal. These results indicated that the gasochromic coloration of the tungsten oxide films coincided with incorporation of hydrogen atoms into the crystalline lattice, corresponding to the formation of hydrogen tungsten bronze (HxWO3).  相似文献   

10.
The effects of composition and structure on gasochromic coloration of tungsten oxide films for hydrogen have been investigated. Tungsten oxide films with various O/W atomic ratios from 1.5 to 3.0 are prepared using a reactive rf magnetron sputtering from a tungsten target at different oxygen partial pressures. The films were deposited on quartz and carbon substrates at 200 °C. The O/W atomic ratio and crystallographic structure of the films were determined by Rutherford backscattering spectroscopy and X-ray diffraction. The gasochromic properties of the films were examined by use of optical transmittance in exposure in 1% H2/Ar atmosphere. The stoichiometric WO3 film with amorphous structure resulted in superior gasochromic coloration. The decrease in gasochromic performance was caused by non-stoichiometric WO3 films with amorphous structure or stoichiometric WO3 films crystallized with post-annealing at temperatures higher than 300 °C in air. It suggests that the gasochromic coloration of tungsten oxide films for hydrogen is strongly influenced by the composition and structure.  相似文献   

11.
Four kinds of tungsten (W) materials, i.e. (1) foil of 50 μm thick (f-W), (2) polycrystalline (Pc-W) with grain size of ∼3 μm, (3) recrystallized (Re-W) with grain size of ∼50 μm and (4) vacuum plasma spraying (VPS-W) coatings, were irradiated employing linear plasma generators, with fluxes ?1 × 1022 D/m2/s and energies ?100 eV/D. Scanning electron microscopy (SEM) was used to observe blister formation at the surfaces. The SEM surface morphology and cross section observation indicates that blister formation is related to the microstructure and surface state of different material grades. Results of trapping and deuterium retention measured by thermal desorption spectroscopy (TDS) and nuclear reaction analysis (NRA) show also a close correlation between the retention and the microstructure and surface state.  相似文献   

12.
High temperature helium and deuterium implantation on tungsten has been studied using the University of Wisconsin inertial electrostatic confinement device. Helium or deuterium ions from a plasma source were driven into polished tungsten powder metallurgy samples. Deuterium implantation did not damage the surface of the specimens at elevated temperatures (∼1200 °C). Helium implantation resulted in a porous surface structure above 700 °C. A helium fluence scan, ion energy scan, and temperature scan were all completed. With 30 keV ions, the pore formation started just below 4 × 1016 He+/cm2. The pore size increased and the pore density decreased with increasing fluence and temperature. The energy scan from 20 to 80 keV showed no consistent trend.  相似文献   

13.
Deuterium retention in two types of polycrystalline tungsten (PCW) was studied as a function of incident ion fluence, ion energy, and specimen temperature. (i) D retention at 300 K, as a function of D+ fluence, demonstrated a trend to saturation in both the Rembar hot-rolled thin foil and Plansee tungsten plate. At 500 K, new D retention results for the Plansee PCW showed an increasing trend with increasing incident D+ fluence without any indication of saturation, in agreement with previous results for Rembar PCW [A.A. Haasz, J.W. Davis, M. Poon, R.G. Macaulay-Newcombe, J. Nucl. Mater. 258-263 (1998) 889-895]. Even when the incident D+ fluence was increased to 8 × 1025 D+/m2, which is in the fluence range of plasma devices, there was still no sign of saturation. (ii) The temperature dependence results for the Plansee PCW show a decreasing trend in D retention as the temperature is increased from 300 to 500 K. These results differ from previous studies of Rembar PCW [A.A. Haasz, J.W. Davis, M. Poon, R.G. Macaulay-Newcombe, J. Nucl. Mater. 258-263 (1998) 889-895], but are similar to those seen for single crystal tungsten [M. Poon, A.A. Haasz, J.W. Davis, R.G. Macaulay-Newcombe, J. Nucl. Mater. 313-316 (2003) 199]; an explanation for the different behaviour is suggested. (iii) Varying the D+ energy from 100 to 500 eV/D+ plays a minor role in the amount of D retained, suggesting that D retention in W depends more on the W structure, incident ion fluence and specimen temperature, rather than on the incident ion energy when the energy is below the threshold for damage formation (∼960 eV for D on W).  相似文献   

14.
Refractory materials are being considered potential candidates to build the first wall of the fusion reactor chamber. This work reports on the results of the study of tungsten and molybdenum metals exposed to high flux densities (~1024 D/m2 s) and low temperature (Te  3 eV) deuterium plasmas in Pilot-PSI irradiation facility.The hydrogenic retention in poly-crystalline W and Mo targets was studied with 3He nuclear reaction analyses (NRA). The NRA results clearly show a two-dimensional radial distribution of the deuterium with a minimum at the center and a maximum close to the edge. These distribution correlates well with the thermal profile of the sample surface, where a maximum of ~1600 K was measured at the center decreasing to ~1000 K in the edges. A maximum deuterium fluence retention of 5 × 1015 D/cm2 was measured. The values of the retained fractions ranging from 10?5 to 10?6 Dretained/Dincident were measured with thermal desorption spectroscopy (TDS) and compares well with IBA results. Moreover, the presence of C in the plasma and its co-deposition increases the D retention in the region where a C film is formed. Both NRA and TDS results show no clear dependence of retention on incident fluence suggesting the absence of plasma related traps in W under these conditions.  相似文献   

15.
Sticking coefficients of deuterium from are quantified on fusion relevant plasma sprayed tungsten and carbon fibre composite in the incident energy range from about 0-100 eV. The samples that were cut from ASDEX-Upgrade tiles are exposed to a beam of of specific incident energy, Einc, in the tandem mass spectrometer BESTOF in Innsbruck. Nuclear reaction analysis is performed ex-situ at IPP Garching for the quantification of deuterium content. The deuterium content difference measured on a spot before and after ion-beam exposure of the sample is assigned to the above mentioned species of hydrocarbon molecules sticking on the surface, allowing the calculation of the sticking probability of a specific deuterated molecular ion. The sticking coefficient, S, is found to depend on the incident energy and shows a maximum of about S ∼ 0.4 around Einc = 30 eV on CFC and about S ∼ 0.1 near Einc = 20 eV in case of PSW.  相似文献   

16.
An experimental study of the physico-chemical behavior of tungsten under severe conditions is presented. High temperatures (1300 ? T ? 2500 K) generated by concentrated solar energy, high vacuum (∼10−6 hPa) and proton flux (1 keV, ∼1017 ions m−2 s−1) have been applied on polycrystalline W samples to simulate expected and also unexpected high heat loads that can occur on the ITER divertor (nominal and accidental conditions). During experiment, in situ measurements are performed and the material degradation, the mass loss kinetics, the characterization of the different species coming from the materials under coupled proton flux and high temperatures and the optical properties (reflectivity) are followed. Material characterization using SEM and XRD was investigated before and after treatment to understand the observed behavior. Bidirectional reflectivity measurements were carried out on the tested samples to explain the surface modifications, between the reference sample, the heated sample and the heated and ion irradiated one that can act on the thermo-radiative properties of tungsten.  相似文献   

17.
Tungsten (W) targets have been exposed to high density (ne ? 4 × 1019 m?3), low temperature (Te ? 3 eV) CH4-seeded deuterium (D) plasma in Pilot-PSI. The surface temperature of the target was ~1220 K at the center and decreased radially to ~650 K at the edges. Carbon film growth was found to only occur in regions where there was a clear CII emission line, corresponding to regions in the plasma with Te ? 2 eV. The maximum film thickness was ~2.1 μm after a plasma exposure time of 120 s. 3He nuclear reaction (NRA) analysis and thermal desorption spectroscopy (TDS) determine that the presence of a thin carbon film dominates the hydrogenic retention properties of the W substrate. Thermal desorption spectroscopy analysis shows retention increasing roughly linearly with incident plasma fluence. NRA measures a C/D ratio of ~0.002 in these films deposited at high surface temperatures.  相似文献   

18.
This work presents the electrochemical study of GdCl3 in the molten LiCl-KCl eutectic in the temperature range 723-823 K. Transient electrochemical techniques such as cyclic voltammetry and chronopotentiometry, on an inert metallic tungsten working electrode, have been used in order to investigate the reduction mechanism and transport parameters. This study shows that Gd3+ ions are reduced to Gd metal by a single step mechanism with exchange of three electrons. Diffusion coefficient of GdCl3 ions was determined at various temperatures, at 723 K the value is D = 0.88 10−5 cm2 s−1. Apparent standard reduction potential of the redox couple Gd3+/Gd has been determined by the open-circuit chronopotentiometry technique at several temperatures. Also the Gibbs free energy of GdCl3 formation was determined and compared with thermodynamic data for pure compounds in the supercooled state in order to estimate the activity coefficient of Gd3+ in the molten LiCl-KCl eutectic.  相似文献   

19.
This paper deals with the study of oxidation kinetics and the identification of oxygen diffusion coefficients of low-tin Zy-4 alloy at intermediate (973 K ? T ? 1123 K) and high temperatures (T ? 1373 K). Two different cases were considered: dissolution of a pre-existing oxide layer in the temperature range 973 K ? T ? 1123 K and oxidation at T ? 1373 K. The results are the following ones: in the temperature range 973-1123 K, the oxygen diffusion coefficient in αZr phase can be expressed as Dα = 6.798 exp(−217.99 kJ/RT) cm2/s. In the temperature range 1373-1523 K, the oxygen diffusion coefficients in αZr, βZr and ZrO2, were determined using an ‘inverse identification method’ from experimental high temperature oxidation data (i.e., ZrO2, and αZr(O) layer thickness measurements); they can be expressed as follows: Dα = 1.543 exp(−201.55 kJ/ RT) cm2/s, Dβ = 0.0068 exp(−102.62 kJ/ RT) cm2/s and DZrO2=0.115exp(143.64kJ/RT)cm2/s. Finally an oxygen diffusion coefficient in αZr in the temperature range 973 K ? T ? 1523 K was determined, by combining the whole set of results: Dα = 4.604exp(−214.44 kJ/RT) cm2/s. In order to check these calculated diffusion coefficients, oxygen concentration profiles were determined by Electron Probe MicroAnalysis (EPMA) in pre-oxidized low-tin Zy4 alloys annealed under vacuum at three different temperatures 973, 1073 and 1123 K for different times, and compared to the calculated profiles. At last, in the framework of this study, it appeared also necessary to reassess the Zr-O binary phase diagram in order to take into account the existence of a composition range in the two zirconia phases, αZrO2 and βZrO2.  相似文献   

20.
In this study, a method is presented based on mass spectroscopy to measure the areal density of deuterium on a graphite surface exposed to tokamak discharges. The studied sample was cut from a bumper limiter exposed in the TEXTOR tokamak and annealed by a 1 J Excimer laser (KrF). The energy used was 400 mJ cm−2, which is below the threshold for ablation, 1 J cm−2. The release of HD and D2 was measured by a mass spectroscopy set-up and no other species released from the sample were detected in this experiment. The amount of D released from the sample after 20 laser pulses was measured to 7 × 1016 D atoms per cm−2 (for this particular sample) and most of the hydrogen at the surface was released in the first pulse, as checked by nuclear reaction analysis (NRA) techniques, which gave changes of the amount of deuterium before and after laser annealing. The sensitivity in this experiment was 5 × 1014 atoms per cm−2 for HD and 5 × 1013 atoms per cm−2 for D2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号