首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The oxygen potential of (U0.88Pu0.12)Ox (−0.0119 < x < 0.0408) and (U0.7Pu0.3)Ox (−0.0363 < x < 0.0288) was measured at high temperatures of 1673-1873 K using gas equilibrium method with thermo gravimeter. The measured data were analyzed by a defect chemistry model. Expressions were derived to represent the oxygen potential based on defect chemistry as functions of temperature and oxygen-to-metal ratio. The thermodynamic data, and , at stoichiometric composition were obtained. The expressions can be used for in situ determination of the oxygen-to-metal ratio by the gas-equilibration method. The calculation results were consistent with measured data. It was estimated that addition of 1 wt.% Pu content increased oxygen potential of uranium and plutonium mixed oxide by 2-5 kJ/mol.  相似文献   

2.
Stoichiometries in (U0.7Pu0.3)Ox and (U0.8Pu0.2)Ox were analyzed with the experimental data of oxygen potential based on point defect chemistry. The relationship between the deviation x of stoichiometric composition and the oxygen partial pressure PO2 was evaluated using a Kröger-Vink diagram. The concentrations of the point defects in uranium and plutonium mixed oxide (MOX) were estimated from the measurement data of oxygen potentials as functions of temperature and PO2. The analysis results showed that x was proportional to near the stoichiometric region of both (U0.7Pu0.3)Ox and (U0.8Pu0.2)Ox, which suggested that intrinsic ionization was the dominant defect. A model to calculate oxygen potential was derived and it represented the experimental data accurately. Further, the model estimated the thermodynamic data, and , of stoichiometric (U0.7Pu0.3)O2.00 and (U0.8Pu0.2)O2.00 as −552.5 kJ·mol−1 and −149.7 J·mol−1, and −674.0 kJ · mol-1 and −219.4 J · mol−1, respectively.  相似文献   

3.
Oxygen non-stoichiometry in (Th0.7Ce0.3)O2−x oxide solid solutions was investigated from the viewpoint of Ce reduction. The oxygen non-stoichiometry was experimentally determined by means of thermogravimetric analysis as a function of oxygen potential at 1173, 1273 and 1373 K. Features of the isotherms of oxygen non-stoichiometry in (Th0.7Ce0.3)O2−x similar to those in oxygen non-stoichiometric actinide and lanthanide dioxides were observed. The oxygen non-stoichiometry in (Th0.7Ce0.3)O2−x was compared with those of CeO2−x and (U0.7Ce0.3)O2−x. It was concluded that the Ce reduction has some relation to defect forms and their transformations in the solid solutions.  相似文献   

4.
Cell parameters and linear thermal expansion studies of the Th-M oxide systems with general compositions Th1−xMxO2−x/2 (M = Eu3+, Gd3+ and Dy3+, 0.0 ? x ? 1.0) are reported. The XRD patterns of each product were refined to specify the solid solubility limits of MO1.5 in the ThO2 lattice. The upper solid solubility limits of EuO1.5, GdO1.5 and DyO1.5 in the ThO2 lattice under conditions of slow cooling from 1673 K are represented as Th0.50Eu0.50O1.75, Th0.60Gd0.40O1.80 and Th0.85Dy0.15O1.925, respectively. The linear thermal expansion (293-1123 K) of MO1.5 and their single-phase solid solutions with thoria were investigated by dilatometery. The average linear thermal expansion coefficients () of the compounds decrease on going from EuO1.5 to DyO1.5. The values of for EuO1.5, GdO1.5 and DyO1.5 containing solid solutions showed a downward trend as a function of the dopant concentration. The linear thermal expansion (293-1473 K) of the solid solutions investigated by high-temperature XRD also showed a similar trend.  相似文献   

5.
Solid state reactions of UO2 and ZrO2 in mild oxidizing condition followed by reduction at 1673 K showed enhanced solubility up to 35 mol% of zirconium in UO2 forming cubic fluorite type ZryU1−yO2 solid solution. The lattice parameters and O/M (M = U + Zr) ratios of the solid solutions, ZryU1−yO2+x, prepared in different gas streams were investigated. The lattice parameters of these solid solutions were expressed as a linear equation of x and y: a0 (nm) = 0.54704 − 0.021x - 0.030y. The oxidation of these solid solutions for 0.1 ? y ? 0.2 resulted in cubic phase MO2+x up to700 K and single orthorhombic zirconium substituted α-U3O8 phase at 1000 K. The kinetics of oxidation of ZryU1−yO2 in air for y = 0-0.35 were also studied using thermogravimetry. The specific heat capacities of ZryU1−yO2 (y = 0-0.35) were measured using heat flux differential scanning calorimetry in the temperature range of 334-860 K.  相似文献   

6.
Heat capacities and enthalpy increments of solid solutions Th1−yUyO2(s) (y = 0.0196, 0.0392, 0.0588, 0.098, 0.1964) and Simfuel (y = 0.0196) were measured by using a differential scanning calorimeter and a high temperature drop calorimeter. The heat capacities were measured in two temperature ranges: 127-305 K and 305-845 K and enthalpy increments were determined in the temperature range 891-1698 K. A heat capacity expression as a function of uranium content y and temperature and a set of self-consistent thermodynamic functions for Th1−yUyO2(s) were computed from present work and the literature data. The oxygen potentials of Th1−yUyO2+x(s) have been calculated and expressed as a polynomial functions of uranium content y, excess oxygen x and temperature T. The phase diagram, oxygen potential diagram of thorium-uranium-oxygen system and major vapour species over urania thoria mixed oxide have been computed using FactSage code.  相似文献   

7.
We have recently synthesized “stuffed” (i.e., excess Lu) Lu2(Ti2−xLux)O7−x/2 (x = 0, 0.4 and 0.67) compounds using conventional ceramic processing. X-ray diffraction measurements indicate that stuffing more Lu3+ cations into the oxide structure leads eventually to an order-to-disorder (O-D) transition, from an ordered pyrochlore to a disordered fluorite crystal structure. At the maximum deviation in stoichiometry (x = 0.67), the Lu3+ and Ti4+ ions become completely randomized on the cation sublattices, and the oxygen “vacancies” are randomized on the anion sublattice. Samples were irradiated with 400 keV Ne2+ ions to fluences ranging from 1 × 1015 to 1 × 1016 ions/cm2 at cryogenic temperatures (∼77 K). Ion irradiation effects in these samples were examined by using grazing incident X-ray diffraction. The results show that the ion irradiation tolerance increases with disordering extent in the non-stoichiometric Lu2(Ti2−xLux)O7−x/2.  相似文献   

8.
The thermal conductivity, Young’s modulus, and hardness of (U0.65−xCe0.3Pr0.05Ndx)O2 (x = 0.01, 0.08, 0.12) were evaluated and the effect of Pr and Nd addition on the properties of (U, Ce)O2 were studied. The polycrystalline high-density pellets were prepared with solid state reactions of UO2, CeO2, Pr2O3, and Nd2O3. We confirmed that all Ce, Pr, and Nd dissolved in UO2 and formed solid solutions of (U, Ce, Pr, Nd)O2. We revealed that the thermal conductivity of (U0.65−xCe0.3Pr0.05Ndx)O2 (x = 0.12) was up to 25% lower than that of x = 0.01 at room temperature. The Young’s modulus of (U0.65−xCe0.3Pr0.05Ndx)O2 decreased with x, whereas the hardness values were constant in the investigated x range.  相似文献   

9.
The dependence of the oxygen potentials on oxygen non-stoichiometry and temperature of Am0.5Pu0.5O2−x has been obtained by the electromotive force (EMF) method with the cell: (Pt) air |Zr(Ca)O2−x| Am0.5Pu0.5O2−x (Pt). The x value of Am0.5Pu0.5O2−x was changed at 1333 K over 0.02 < x ? 0.25 by the coulomb titration method. The temperature dependence of the oxygen potential was also measured over the range of 1173-1333 K. It was found that the oxygen potential decreased from −80 to −360 kJ mol−1 with increasing x from 0.021 to 0.22 at 1333 K and that it remained almost constant at −360 kJmol−1 around x = 0.23. It was concluded that Am0.5Pu0.5O2−x should be composed of the single fluorite-type phase over 0.02 < x ? 0.22 and the mixed phases of fluorite-type and (Am, Pu)9O16 at around x = 0.23.  相似文献   

10.
(U, Pu) mixed oxides, (U1−yPuy)O2−x, with y = 0.21 and 0.28 are being considered as fuels for the Prototype Fast Breeder Reactor (PFBR) in India. The use of urania-plutonia solid solutions in PFBR calls for accurate measurement of physicochemical properties of these materials. Hence, in the present study, oxygen potentials of (U1−yPuy)O2−x, with y = 0.21 and 0.28 were measured over the temperature range 1073-1473 K covering an oxygen potential range of −550 to −300 kJ mol−1 (O/M ratio from 1.96 to 2.000) by employing a H2/H2O gas equilibration technique followed by solid electrolyte EMFmeasurement. (U1−yPuy)O2−x, with y = 0.40 is being used in the Fast Breeder Test Reactor (FBTR) in India to test the behaviour of fuels with high plutonium content. However, data on the oxygen potential as well as thermal conductivity of the mixed oxides with high plutonium content are scanty. Hence, the thermal diffusivity of (U1−yPuy)O2, with y = 0.21, 0.28 and 0.40 was measured and the results of the measurements are reported.  相似文献   

11.
The effect of oxygen potential on the sintering behavior of MgO-based heterogeneous fuels containing (Pu, Am)O2−x was experimentally investigated. Sintering tests in various atmospheres, i.e. air, moisturized 4%H2-Ar, and 4%H2-Ar atmosphere, were carried out. The sintering behavior was found to be significantly affected by the oxygen potential in the sintering atmosphere. The sintered density decreased with decreasing oxygen potential. The (Pu, Am)O2−x phase sintered in a reductive atmosphere had hypostoichiometry. The aggregates of the (Pu, Am)O2−x phase sintered in the reductive atmosphere grew, in comparison with those in the oxidizing one. The sintering mechanism was discussed in terms of the difference in sintering behavior of (Pu, Am)O2−x and MgO.  相似文献   

12.
This study describes the synthesis and the characterisation of Pu1−xAmxO2 (x = 0.2; 0.5; 0.8) mixed oxides obtained by oxalate co-conversion. We studied the self-irradiation effect in these compounds at the structural scale. We determined, for each composition, the initial lattice parameter and the equation describing its variation versus time and displacements per atom. Similarly to other α emitting compounds, it was observed a fast lattice parameter expansion rate, followed by a stabilisation at a maximum value. The observations also showed that the initial expansion rate varies according to the Am content and the maximum value to the Pu content. However, for all compositions, the lattice parameter relative variations are the same.  相似文献   

13.
Thoria (ThO2) based ceramic material is a versatile and very important matrix for immobilization of plutonium and other tetravalent actinides either as a burning or a deposition material for final disposal. The aim of this study was to investigate the influence of the actinide concentration (simulated with cerium), the fabrication conditions and the properties of the produced powders on the compactibility and sinterability of the final products. The (Th1−xCex)O2 powders with ceria concentration varying from 5 to 50 mol% were synthesized by co-precipitation method. The pellets were then compacted from calcined and ground powders at pressures varying from 250 to 750 MPa. The produced pellets had a homogenous grain size and sintered densities of 0.88% to 0.95% TD, respectively.  相似文献   

14.
Irradiation-induced microstructural evolution in uranium-bearing delta-phase oxides of A6U1O12 (A = rare earth cations) were characterized using grazing incidence X-ray diffraction and transmission electron microscopy. Polycrystalline Y6U1O12, Gd6U1O12, Ho6U1O12, Yb6U1O12, and Lu6U1O12 samples were irradiated with 300 keV Kr++ to a fluence of 2 × 1020 ions/m2 at cryogenic temperature (∼100 K). The crystal structure of these compounds was determined to be an ordered, fluorite derivative structure, known as the delta-phase, a rhombohedral symmetry belonging to space group . Experimental results indicate that all these compounds are resistant to amorphization to a displacement damage dose of ∼60 displacements per atom. In these experiments, we sometimes observed an irradiation-induced order-to-disorder phase transformation, from an ordered rhombohedral to a disordered fluorite structure.  相似文献   

15.
Enthalpy increments of urania - thoria solid solutions, (U0.10Th0.90)O2, (U0.50Th0.50)O2 and (U0.90Th0.10)O2 were measured by drop calorimetry in the temperature range 479 - 1805 K. Heat capacity, entropy and Gibbs energy function were computed. The heat capacity measurements were carried out also with differential scanning calorimetry in the temperature range 298 - 800 K. The heat capacity values of (U0.10Th0.90)O2, (U0.50Th0.50)O2 and (U0.90Th0.10)O2 at 298 K are 59.62, 61.02, 63.56 J K−1 mol−1, respectively. The results were compared with the data available in the literature. From the study, the heat capacity of (U,Th)O2 solid solutions was shown to obey the Neumann - Kopp’s rule.  相似文献   

16.
Three kinds of defect solid solution GdxZr1−xO2−x/2 with 0.18 ? x ? 0.62, including the three single crystal samples with x = 0.21, 0.26 and 0.30, were investigated by 155Gd Mössbauer spectroscopy at 12 K. Difference in the structural characteristic under longer term annealing were confirmed by comparing the 155Gd Mössbauer parameters of the polycrystalline samples sintered one time and twice at 1773 K for 16 h in air, respectively. The results indicated that the polycrystalline samples sintered twice have relatively equilibrated structure by comparing with the three single crystal samples. After being sintered twice, basically the local structure around the Gd3+ ions does not change, but the degree of the displacements of the six 48f oxygen ions from positions of cubic symmetry becomes slightly smaller, and distribution of the Gd3+ ions in the system becomes more homogeneous.  相似文献   

17.
The solid solutions of (U1−zy’−yPuzAmyNpy)O2−x (z = 0-1, y’ = 0-0.12, y” = 0-0.07) were investigated by X-ray diffraction measurements, and a database for the lattice parameters was updated. A model to calculate the lattice parameters was derived from the database. The radii of the ions present in the fluorite structure of (U, Pu, Am, Np)O2−x were estimated from the lattice parameters measured in this work. The model represented the experimental data within a standard deviation of σ = ±0.025%.  相似文献   

18.
The melting behavior of MgO-based inert matrix fuels containing (Pu,Am)O2−x ((Pu,Am)O2−x-MgO fuels) was experimentally investigated. Heat-treatment tests were carried out at 2173 K, 2373 K and 2573 K each. The fuel melted at about 2573 K in the eutectic reaction of the Pu-Am-Mg-O system. The (Pu,Am)O2−x grains, MgO grains and pores grew with increasing temperature. In addition, Am-rich oxide phases were formed in the (Pu,Am)O2−x phase by heat-treatment at high temperatures. The melting behavior was compared with behaviors of PuO2−x-MgO and AmO2−x-MgO fuels.  相似文献   

19.
Solubility of ThO2 in gadolinium zirconate pyrochlore, a potential host for radioactive materials, has been investigated. The phase relations in Gd2−xThxZr2O7+x/2 (0.0 ? x ? 2.0) systems have been established under the slow-cooled conditions from 1400 °C. XRD studies reveal that the compositions corresponding to x = 0.0-0.075 are single phasic in nature and beyond x ? 0.1 the biphasic region starts. The first biphasic region comprising of pyrochlore and thoria exist from x = 0.1-0.8, and from x = 1.2 another biphasic region consisting of gadolinia stabilized zirconia (GSZ) and thoria appears which persists till x = 1.6. The end member (i.e. x = 2.0) of the series is found to be a mixture of monoclinic ZrO2 and thoria. Interestingly, gadolinia which has wide solubility in thoria, did not show any miscibility in thoria in the presence of zirconia. Irregular grains of Gd1.8Th0.2Zr2O7.1 as shown in SEM supports its biphasic nature. Raman spectra of heavily thoria doped (x = 0.1 and 0.2) samples, indicates the presence of Zr-O7 mode which implies the samples are highly disordered in nature.  相似文献   

20.
Because of its high incorporation capacity and of the high thermal neutron capture cross-section of hafnium, Hf-zirconolite (CaHfTi2O7) ceramic can be envisaged as a potential waste form for minor actinides (Np, Am, Cm) and plutonium immobilization. In this work, Nd-doped Hf-zirconolite Ca1−xNdxHfTi2−xAlxO7 (x = 0; 0.01 and 0.2) ceramics have been prepared by solid state reaction. Neodymium has been used as trivalent actinide surrogate. The ceramic samples structure has been studied by X-ray diffraction and refined by the Rietveld method. This revealed that Nd3+ ions only enter the Ca site, whereas part of Hf4+ ions substitute titanium into Ti(1) sites and Al3+ ions mainly occupy the Ti(2) split sites and Ti(3) sites of the zirconolite structure. Using various spectroscopic techniques (electron spin resonance, optical absorption and fluorescence), the environment of Nd3+ cations in Hf-zirconolite has been studied and compared with that of Nd3+ cations in Zr-zirconolite (CaZrTi2O7). Different local environments of Nd3+ cations have been detected in Hf-zirconolite that can be attributed to the existence of an important disorder around Nd in the Ca site probably due to the statistical occupancy of the next nearest cationic site of neodymium (a split Ti site) by Ti4+, Al3+ cations and vacancies. No significant differences were observed concerning Nd3+ cations environment and distribution in Hf- and Zr-zirconolite ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号