首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Nanostructured ferritic oxide dispersion strengthened (ODS) alloy is an ideal candidate for fission/fusion power plant materials, particularly in the use of a first-wall and blanket structure of a next generation reactor. These steels usually contain a high density of Y-Ti-O and Y-Al-O nanoparticles, high dislocation densities and fine grains. The material contains nanoparticles with an average diameter of 21 nm and was treated by several cold rolling procedures, which modify the dislocation density. Structural analysis with HRTEM shows that the chemical composition of the initial Y2O3 oxide is modified to perovskite YAlO3 (YAP) and Y2Al5O12 garnet (YAG). Irradiation of these alloys was performed with a dual beam irradiation of 2.5 MeV Fe+/31 dpa and 350 keV He+/18 appm/dpa. Irradiation causes atomic displacements resulting in vacancy and self-interstitial lattice defects and dislocation loops. Extended SRIM calculations for ODS steel indicate a clear spatial separation between the excess vacancy distribution close to the surface and the excess interstitials in deeper layers of the material surface. The helium atoms are supposed to accumulate mainly in the vacancies. Additionally to structural changes, the effect of the irradiation generated defects on the mechanical properties of the ODS is investigated by nanoindentation. A clear hardness increase in the irradiated area is observed, which reaches a maximum at a close surface region. This feature is attributed to synergistic effects between the displacement damage and He implantation resulting in He filled vacancies. Fine He cavities with diameters of a few nanometers were identified in TEM images.  相似文献   

2.
ODS (oxide dispersion strengthened) alloys have superior creep properties. As it is well known, these excellent creep properties result from very fine oxide particles dispersed with the matrix. However, there is no common understanding about the nature of the very small oxide particles. Two hypotheses arise from the literature, 1: non-stoichiometric Y-, Ti-, O-enriched clusters and 2: stoichiometric Y2Ti2O7. In this work, both chemically extracted residue method and extraction replica method were applied to the commercial ODS ferritic alloy, MA957. These samples were then observed using XRD (X-ray diffractometry) and FEG-STEM (field emission gun-scanning transmission electron microscopy) with EDS (energy dispersive X-ray spectrometer). From the results, it was concluded that the composition of small particles is related to the particle size. They exhibit at least two types of phase, 1: non-stoichiometric Y-, Ti-, O-enriched clusters from ∼2 to ∼15 nm (Y/Ti < 1) and 2: stoichiometric Y2Ti2O7 from ∼15 to ∼35 nm. Based on the result, it is suggested that the appropriate increase of titanium content compared to yttrium content in oxide particles by modifying the chemical compositions of ODS alloys could be an effective way to obtain a finer dispersion of oxide particles.  相似文献   

3.
Laser-pulsed atom-probe tomography has been used to study the nanoscale features present in an ODS-Eurofer 97 alloy. A core/shell structure was found for particles 5-10 nm in diameter. The particle cores were primarily Y and O, enriched with Mn and Si resulting in a metal (Y, Mn and Si) to oxygen ratio of M:O ∼2:3. The ∼2 nm thick outer-shell region of the particles exhibited partitioning of V, Cr, Ta, C and N together with the core elements in many cases. Detailed compositional measurements have also been made on the smallest of the yttria-based oxide clusters down to 2 nm in diameter. The 2 nm clusters were found to have a non-stoichiometric oxide composition, enriched in oxygen compared to Y2O3, and evidence for the existence of a shell around these smaller particles was found.  相似文献   

4.
Polycrystalline Y6W1O12 samples were irradiated with 280 keV Kr2+ ions to fluences up to 2 × 1020 ions/m2 at cryogenic temperature (100 K). Ion irradiation damage effects in these samples were examined using grazing incidence X-ray diffraction (GIXRD) and cross-sectional transmission electron microscopy (TEM). The pristine Y6W1O12 possesses rhombohedral symmetry (structure known as the δ-phase), which is closely related to cubic fluorite structure. GIXRD and TEM observations revealed that the irradiated Y6W1O12 experiences an ordered rhombohedral to disordered cubic fluorite transformation by a displacement damage dose of ∼12 displacements per atom (dpa). At the highest experimental dose of ∼50 dpa, the uppermost irradiated region was found to be partially amorphous while the buried damage region was found to contain the same fluorite structure as observed at lower dose.  相似文献   

5.
Reactive-inspired ball-milling is proposed as a new production route for oxide dispersion strengthened (ODS) steels. So a Fe-14Cr-2W-1Ti-0.8Y-0.2O (wt.%) ODS steel is elaborated by ball-milling of FeCrWTi and YFe3 plus Fe2O3 powders instead of Y2O3 and then by annealing at 800 °C for 5 min. Characterizations by Electron Probe MicroAnalysis and Atom Probe Tomography (APT) are performed after milling and after annealing. For the very first time, nanoclusters are observed after ball-milling by APT. Those nanoclusters are enriched in titanium, yttrium and oxygen and their mean radius is 0.8 nm. With annealing, the mean radius rises up to 1.4 nm and the number density as well as the enrichment factor in O, Ti and Y increase. So a new formation mechanism of nanoclusters is observed in those conditions of synthesis: ball-milling initiates the nanoclusters nucleation and during annealing, nucleation continues, accompanied by a slight growth of nanoclusters. Thus reactive-inspired ball-milling appears as a promising route for synthesizing ODS steels with a fine and dense dispersion of oxides.  相似文献   

6.
The behaviour of protective oxide layers on P122 steel and its welds and of ODS steel in liquid Pb44.5Bi55.5 (LBE) is examined under conditions of changing temperatures and oxygen concentrations. P122 (12Cr) and its welded joints are exposed to LBE at 550 °C for 4000 h with oxygen concentrations of 10−6 and 10−8 wt% (p(O2) = 8.1 × 10−23 bar and 5.2 × 10−27 bar) which change every 800 h. It is found that like in case of constant oxygen concentration of 10−6 wt% a protective spinel layer (Fe(Fe1−xCrx)2O4) was maintained on P122 and also on its welded joint. Two experiments with exposure times of 4800 h are conducted on ODS steel, both with temperatures changing from 550 to 650 °C and back every 800 h, one experiment with 10−6 the other with 10−8 wt% oxygen in LBE. Both experiments show strong local dissolution attack after 4800 h which is in agreement with the behaviour of ODS in LBE at a constant temperature of 650 °C. However, dissolution attack is less in LBE with 10−8 wt% oxygen (p(O2) = 3.0 × 10−25 bar).  相似文献   

7.
Different ODS EUROFER steels reinforced with Y2O3 and MgAl2O4 were elaborated by mechanical milling and hot isostatic pressing. Good compromise between strength and ductility could be obtained but the impact properties remain low (especially for the Y2O3 ODS steel). The materials were structurally characterized at each step of the elaboration. During milling, the martensite laths of the steel are transformed into nano-metric ferritic grains and the Y2O3 oxides dissolve (but not the MgAl2O4 spinels). After the HIP, all the ODS steels remain ferritic with micrometric grains, surrounded by nano-metric grains for the Y2O3 ODS steels. The mechanisms in the Y2O3 ODS steels are complex: the Y2O3 oxides re-precipitate as nano-Y2O3 particles that impede a complete austenitization during the HIP. The quenchability of the ODS steels is modified by the milling process, the oxide nature and the oxide content. Eventually, the advantages and drawbacks of each oxide type are discussed.  相似文献   

8.
The Fe-14Cr-2W-0.3Ti-0.3Y2O3 oxide dispersion strengthened (ODS) reduced activation ferritic (RAF) steel was fabricated by mechanical alloying of a pre-alloyed, gas atomised powder with yttria nano-particles, followed by hot isostatic pressing and thermo-mechanical treatments (TMTs). Two kinds of TMT were applied: (i) hot pressing, or (ii) hot rolling, both followed by annealing in vacuum at 850 °C.The use of a thermo-mechanical treatment was found to yield strong improvement in the microstructure and mechanical properties of the ODS RAF steel. In particular, hot pressing leads to microstructure refinement, equiaxed grains without texture, and an improvement in Charpy impact properties, especially in terms of the upper shelf energy (about 4.5 J). Hot rolling leads to elongated grains in the rolling direction, with a grain size ratio of 6:1, higher tensile strength and reasonable ductility up to 750 °C, and better Charpy impact properties, especially in terms of the ductile-to-brittle transition temperature (about 55 °C).  相似文献   

9.
The neutron response of detectors prepared using α-Al2O3:C phosphor developed using a melt processing technique and mixed with neutron converters was studied in monoenergetic neutron fields. The detector pellets were arranged in two different pairs: α-Al2O3:C + 6LiF/α-Al2O3:C + 7LiF and α-Al2O3:C + high-density polyethylene/α-Al2O3:C + Teflon, for neutron dosimetry using albedo and recoil proton techniques. The optically stimulated luminescence response of the Al2O3:C + 6,7LiF dosimeter to radiation from a 252Cf source was 0.21, in terms of personal dose equivalent Hp(10) and relative to radiation from a 137Cs source. This was comparable to results obtained with similar detectors prepared using commercially available α-Al2O3:C phosphor. The Hp(10) response of the α-Al2O3:C + 6,7LiF dosimeters was found to decrease by more than two orders of magnitude with increasing neutron energy, as expected for albedo dosimeters. The response of the α-Al2O3:C + high-density polyethylene/α-Al2O3:C + Teflon dosimeters was small, of the order of 1% to 2% in terms of Hp(10) and relative to radiation from a 137Cs source, for neutron energies greater than 1 MeV.  相似文献   

10.
Changes in the shape and size of Co, Pt and Au nanoparticles induced by swift heavy-ion irradiation (SHII) have been characterized using a combination of transmission electron microscopy, small-angle X-ray scattering and X-ray absorption near-edge structure. Elemental nanoparticles of diameters 2-15 nm were first formed in amorphous SiO2 by ion implantation and thermal annealing and then irradiated at room temperature with 27-185 MeV Au ions as a function of fluence. Spherical nanoparticles below a minimum diameter (4-7 nm) remained spherical under SHII but progressively decreased in size as a result of dissolution into the SiO2 matrix. Spherical nanoparticles above the minimum diameter threshold were transformed to elongated rods aligned with the ion beamdirection. The nanorod width saturated at an electronic energy deposition dependent value, progressively increasing from 4-6 to 7-10 nm (at 5-18 keV/nm, respectively) while the nanorod length exhibited a broad distribution consistent with that of the unirradiated spherical nanoparticles. The threshold diameter for spherical nanoparticle elongation was comparable to the saturation value of nanorod width. We correlate this saturation value with the diameter of the molten track induced in amorphous SiO2 by SHII. In summary, changes in nanoparticle shape and size are governed to a large extent by the ion irradiation parameters.  相似文献   

11.
Tin dioxide nanoparticles embedded in silica matrix were fabricated by ion implantation combined with thermal oxidation. Silica substrate was implanted with a 150 keV Sn+ ions beam with a fluence of 1.0 × 1017 ions/cm2. The sample was annealed for 1 h in a conventional furnace at a temperature of 800 °C under flowing O2 gas. According to the structural characterization performed by X-ray diffraction and transmission electron microscopy techniques, metallic tetragonal tin nanoparticles with a volume average size of 12.8 nm were formed in the as-implanted sample. The annealing in oxidizing atmosphere promotes the total oxidation of the tin nanoparticles into tin dioxide nanoparticles with a preferential migration toward the surface of the matrix, where large and coalesced nanoparticles were observed, and a small diffusion toward the bulk, where smaller nanoparticles were found.  相似文献   

12.
Enthalpy increment measurements on La2Te3O9(s) and La2Te4O11(s) were carried out using a Calvet micro-calorimeter. The enthalpy values were analyzed using the non-linear curve fitting method. The dependence of enthalpy increments with temperature was given as: (T) − (298.15 K) (J mol−1) = 360.70T + 0.00409T2 + 133.568 × 105/T − 149 923 (373 ? T (K) ? 936) for La2Te3O9 and (T) − (298.15 K) (J mol−1) = 331.927T + 0.0549T2 + 29.3623 × 105/T − 114 587 (373 ? T (K) ? 936) for La2Te4O11.  相似文献   

13.
Microstructures and creep behavior of two martensitic oxide dispersion strengthened (ODS) steels 8%Cr-2%W-0.2%V-0.1%Ta (J1) and 8%Cr-1%W (J2) with finely dispersed Y2Ti2O7 have been investigated. Creep tests have been carried out at 670, 700 and 730 °C. Creep strength of J1 is stronger than that of any other ODS martensitic steels and the hoop strength of the ferritic ODS steel cladding. At the beginning of creep test, shrinkage was frequently observed for J1. This is one of the reasons for high creep strength of J1. The δ-ferrite, which is untransformed to austenite at hot isostatic press and hot rolling temperatures, was elongated along the rolling direction, and volume fraction of δ-ferrite in J1 is larger than J2. Although the elongated δ-ferrite affects the anisotropy of creep behavior, the extent of anisotropy in J1 is not so large as that of the ferritic ODS steel.  相似文献   

14.
An argon gas atomized, pre-alloyed Fe-14Cr-2W-0.3Ti (wt.%) reduced activation ferritic (RAF) steel powder was mechanically alloyed with 0.3wt.% Y2O3 nano-particles in an attritor ball mill and consolidated by hot isostatic pressing at 1150 °C under a pressure of 200 MPa for 3 h. In the aim to improve its mechanical properties the ODS steel was then submitted to a thermo-mechanical treatment (TMT): hot rolling (HR) at 850 °C or high speed hydrostatic extrusion (HSHE) at 900 °C, followed by heat treatment (HT).Transmission electron microscopy (TEM) observations of the ODS alloys after TMT and heat treatment revealed the presence of elongated grains in the longitudinal direction, with an average width of 8 μm and an average length of 75 μm, and equiaxed grains, a few microns in diameter, in the transverse direction. Two populations of oxide particles were observed by TEM: large Ti-Al-O particles, up to 250 nm in diameter, usually located at the grain boundaries and small Y-Ti-O nanoclusters, about 2.5 nm in diameter, uniformly distributed in the matrix. Charpy impact tests revealed that the HSHE material exhibits a larger upper shelf energy (5.8 J) than the HR material (2.9 J). The ductile-to-brittle transition temperature of both alloys is relatively high, in the range of 55-72 °C. Tensile mechanical properties of both ODS alloys were found satisfactory over the full range of investigated temperatures (23-750 °C). The HSHE material exhibits better tensile strength and ductility than the HR material. These results indicate that HSHE can be considered as a promising TMT method for improving the mechanical properties of ODS RAF steels.  相似文献   

15.
Metal ion implantation in inert polymers may produce ultra-thin conducting films below the polymer surface. These subsurface films are promising structures for strain gauge applications. To this purpose, polycarbonate substrates were irradiated at room temperature with low-energy metal ions (Cu+ and Ni+) and with fluences in the range between 1 × 1016 and 1 × 1017 ions/cm2, in order to promote the precipitation of dispersed metal nanoparticles or the formation of a continuous thin film. The nanoparticle morphology and the microstructural properties of polymer nanocomposites were investigated by glancing-incidence X-ray diffraction and transmission electron microscopy (TEM) measurements. At lower fluences (<5 × 1016 ions/cm2) a spontaneous precipitation of spherical-shaped metal nanoparticles occurred below the polymer top-surface (∼50 nm), whereas at higher fluences the aggregation of metal nanoparticles produced the formation of a continuous polycrystalline nanofilm. Furthermore, a characteristic surface plasmon resonance peak was observed for nanocomposites produced at lower ion fluences, due to the presence of Cu nanoparticles. A reduced electrical resistance of the near-surface metal-polymer nanocomposite was measured. The variation of electrical conductivity as a function of the applied surface load was measured: we found a linear relationship and a very small hysteresis.  相似文献   

16.
Interference structures in the ejected electron spectra for 30 MeV O5,8+ + O2 are investigated. The measured electron yields were studied for electron energies from 5 to 400 eV and observation angles of 30°, 60°, 90°, 120° and 150° with respect to the incident beam direction. Experimental molecular cross-sections were normalized to theoretical molecular one-center cross-sections revealing oscillatory structures suggestive of secondary interferences as evidenced by the independence on the observation angle. An oscillation interval for 30 MeV O5,8+ + O2 of Δk ∼ 4 a.u. is found, a value two times larger than that previously observed for 3 MeV H+ + N2. No obvious evidence for primary Young-type interferences was seen.  相似文献   

17.
Silicon oxynitride (SixOyNz) layers were synthesized by implanting 16O2+ and 14N2+ 30 keV ions in 1:1 ratio with fluences ranging from 5 × 1016 to 1 × 1018 ions cm−2 into single crystal silicon at room temperature. Rapid thermal annealing (RTA) of the samples was carried out at different temperatures in nitrogen ambient for 5 min. The FTIR studies show that the structures of ion-beam synthesized oxynitride layers are strongly dependent on total ion-fluence and annealing temperature. It is found that the structures formed at lower ion fluences (∼1 × 1017 ions cm−2) are homogenous oxygen-rich silicon oxynitride. However, at higher fluence levels (∼1 × 1018 ions cm−2) formation of homogenous nitrogen rich silicon oxynitride is observed due to ion-beam induced surface sputtering effects. The Micro-Raman studies on 1173 K annealed samples show formation of partially amorphous oxygen and nitrogen rich silicon oxynitride structures with crystalline silicon beneath it for lower and higher ion fluences, respectively. The Ellipsometry studies on 1173 K annealed samples show an increase in the thickness of silicon oxynitride layer with increasing ion fluence. The refractive index of the ion-beam synthesized layers is found to be in the range 1.54-1.96.  相似文献   

18.
The present paper deals with the emission of atomic and molecular ions from elemental molybdenum surface under Cs+ bombardment to explore the MCs+ formation mechanism with changing Cs surface coverage. Integrated count of MoCs+ shows a monotonic increase with increasing primary ion energy (1-5 keV). Change in MoCs+ intensity is attributed to the variation of surface work function ? and cesium surface concentration cCs due to varying impact energies. Variation of cCs has been obtained from the expression, cCs ∝ 1/(1 + Y) where Y is the elemental sputtering yield estimated from TRIM calculations. Systematic study of the energy distributions of all species emerging from Mo target has been done to measure the changes in surface work function. Changing slopes of the leading parts of Cs+ energy distributions suggest a substantial depletion in surface work function ? with decreasing primary ion energies. Δ? shows a linear dependence on cCs. The maximum reduction in surface work function Δ?max = 0.69 eV corresponds to the highest value of cCs = 0.5. A phenomenological model, based on the linear dependence of ? on cCs, has been employed to explain the MoCs+ data.  相似文献   

19.
Oxygen deficiency and excess of rutile titania (TiO2) surfaces are important factors for catalytic activities of metal nano-particles on the TiO2 supports. Medium energy ion scattering (MEIS; 80 keV He+) coupled with elastic recoil detection analysis (ERD; 150 keV Ne+) can determine the numbers of bridging O (Obr) vacancies (VO) and excess O atoms adsorbed on the 5-fold Ti rows of TiO2(1 1 0) surfaces. The amounts of VO and adsorbed O were derived by H2O and 18O2 exposure followed by ERD and MEIS analyses, respectively. The present analysis revealed that only about a half of VO are filled and a comparable amount of O atoms are adsorbed on the reduced TiO2(1 1 0) surface after exposure to O2 (1000 L; 1 L = 1 × 10−6 Torr s) at room temperature (RT). We also detected the adsorbed O for the hydroxylated TiO2(1 1 0) after 18O2 exposure at RT. Finally, it is shown that the O adsorbed on the Ti rows reacts with CO probably to form CO2 at RT. Based on the results obtained here, we clarify the reason why only a half of VO are filled by exposing reduced surface to O2 at RT and what is the primary source of subsurface excess electronic charge, which acts as a leading part of the surface electrochemistry and gives the defect state in the band gap seen in the valence band spectra for reduced and hydroxylated TiO2(1 1 0) surfaces.  相似文献   

20.
The results of present paper have shown that sputtering of yttrium iron garnet (Y3Fe5O12) under swift heavy ions in the electronic energy loss regime is non-stoichiometric. Here we are presenting additional experimental results for gadolinium gallium garnet (Gd3Ga5O12) as target. The irradiations were performed with different ions (50Cr (589 MeV), 86Kr (195 MeV) and 181Ta (400 MeV)) impinging perpendicularly to the surface. As earlier, the sputtering yield was determined by collecting the emitted gadolinium and gallium atoms on a thin aluminium foil, placed upstream above the target and analyzing the Al catcher by Rutherford backscattering. Also for Gd3Ga5O12, the emission of Gd and Ga is non-stoichiometric. Sputtering appears above a critical electronic stopping power of Sth = 11.6 ± 1.5 keV/nm, which is larger than the threshold for track formation, in agreement with other amorphisable materials. In addition, the angular distribution of the sputtered species was measured for Y3Fe5O12 and Gd3Ga5O12 using 200 MeV Au ions impinging the surface at 20° relatively to the surface. For the two garnets the ratio of Y/Fe (and Gd/Ga) varies with the angle of emitted species and the stoichiometry seems to be preserved only for an emission perpendicular to the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号