首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reduced activation ferritic martensitic (RAFM) steel is a major structural material for test blanket module (TBM) to be incorporated in International Thermonuclear Experimental Reactor (ITER) programme to study the breeding of tritium in fusion reactors. This material has been mainly developed to achieve significant reduction in the induced radioactivity from the structural material used. Fabrication of TBM involves extensive welding, and gas tungsten arc welding (GTAW) process is one of the welding processes being considered for this purpose. In the present work, the effect of heat input on microstructure of indigenously developed RAFM steel weld metal produced by GTAW process has been studied. Autogenous bead-on-plate welding, autogenous butt-welding, butt-welding with filler wire addition, and pulsed welding on RAFMS have been carried out using GTAW process respectively. The weld metal is found to contain δ-ferrite and its volume fraction increased with increase in heat input. This fact suggests that δ-ferrite content in the weld metal is influenced by the cooling rate during welding. It was also observed that the hardness of the weld metal decreased with increase in δ-ferrite content. This paper highlights the effect of heat input and PWHT duration on microstructure and hardness of welds.  相似文献   

2.
A comparison between pearlitic 2CrMoV steel (WWER-440) and 9% Cr based ferritic-martensitic steels (EUROFER 97 and LA12TaLC) is presented as regards irradiation induced ductile-brittle transition temperature shifts. For neutron doses of 1.5-2 dpa and irradiation temperatures around 300 °C the transition temperature shifts for WWER-440 steel and EUROFER 97 welds are comparable. In the temperature range 350-500 °C the radiation embrittlement levels of both steels are low. Moreover, post-irradiation annealing is proposed as a promising method to predict results of high temperature irradiation embrittlement from existing lower temperature irradiation embrittlement data.  相似文献   

3.
The paper summarizes original results of irradiation embrittlement study of EUROFER 97 material that has been proposed as one candidate of structural materials for future fusion energy systems and GEN IV.Test specimens were manufactured from base metal as well as from weld metal and tested in initial unirradiated condition and also after neutron irradiation.Irradiation embrittlement was characterized by testing of toughness properties at transition temperature region - static fracture toughness and dynamic fracture toughness properties, all in sub-size three-point bend specimens (27 × 4 × 3 mm3). Testing and evaluation was performed in accordance with ASTM and ESIS standards, fracture toughness KJC and KJd data were also evaluated with the “Master curve” approach. Moreover, J-R dependencies were determined and analyzed.The paper compares unirradiated and irradiated properties as well as changes in transition temperature shifts of these material parameters. Discussion about the correlation between static and dynamic properties is also given.Results from irradiation of EUROFER 97 show that this steel - base metal as well as weld metal - is suitable as a structural material for reactor pressure vessels of innovative nuclear systems - fusion energy systems and GEN IV. Transition temperature shifts after neutron irradiation by 2.5 dpa dose show a good agreement in the case of EUROFER 97 base material for both static and dynamic fracture toughness tests. From the results it can be concluded that there is a low sensitivity of weld metal to neutron irradiation embrittlement in comparison with EUROFER 97 base metal.  相似文献   

4.
The susceptibility of the ferritic-martensitic steels T91 and EUROFER97 to liquid metal embrittlement (LME) in lead alloys has been examined under various conditions. T91, which is currently the most promising candidate material for the high temperature components of the future accelerator driven system (ADS) was tested in liquid lead bismuth eutectic (LBE), whereas the reduced activation steel, EUROFER97 which is under consideration to be the structural steel for fusion reactors was tested in liquid lead lithium eutectic. These steels, similar in microstructure and mechanical properties in the unirradiated condition were tested for their susceptibility to LME as function of temperature (150-450 °C) and strain rate (1 × 10−3-1 × 10−6 s−1). Also, the influence of pre-exposure and surface stress concentrators was evaluated for both steels in, respectively, liquid PbBi and PbLi environment. To assess the LME effect, results of the tests in liquid metal environment are compared with tests in air or inert gas environment. Although both unirradiated and irradiated smooth ferritic-martensitic steels do not show any or little deterioration of mechanical properties in liquid lead alloy environment compared to their mechanical properties in gas as function of temperature and strain rate, pre-exposure or the presence of surface stress concentrators does lead to a significant decrease in total elongation for certain test conditions depending on the type of liquid metal environment. The results are discussed in terms of wetting enhanced by liquid metal corrosion or crack initiation processes.  相似文献   

5.
The Helium Cooled Pebble Bed Test Blanket Module (TBM) features a structural box that consists of the first wall, two caps and a stiffening grid. Inside the stiffening grid the breeding units (BUs), consisting of the beryllium and lithium ceramic pebble beds and cooling plates, are accommodated. The BUs are closed by the BU back plates and several structural plates of the manifold system as well as the TBM back plate consequently the BUs may not be accessed directly after the assembly of the TBM box; however, access is possible through dedicated penetrations in the TBM caps. According to the current manufacturing strategy, the assembly of the TBM structural sub-components is based on several welding processes which require post-welding heat treatments (PWHT) at temperatures which exceed the temperature limit of the beryllium pebbles. For that reason the beryllium pebble beds will be packed after the TBM box is assembled and heat treated. The packing of the BUs will be performed using a small-diameter (5 mm) tube that will be inserted into some penetrations in the TBM caps. It is expected that the lithium ceramic pebbles can withstand the high temperatures of the PWHT (this assumption needs to be verified) therefore the current strategy is to pack the ceramic pebble beds during the TBM box assembly. This study experimentally demonstrates the packing procedures for the beryllium beds using a full-scale Plexiglas mock-up as well as the optimization of the packing process by dedicated measures such as vibrating and tilting of the mock-up. In addition the impacts of the experimental results on the TBM design are summarized and the paper is concluded by proposing a packing strategy that can be used to achieve a packing factor of 63.6%.  相似文献   

6.
Thin wall tubes with suitable dimensions for possible future use as nuclear fuel cladding based on ferritic-martensitic steel T91 have been produced. Several rolling routes for thin wall tube rolling have been successfully explored to produce T91 tubes of 8.5 mm OD and 0.5 mm wall thickness as well as 6.5 mm OD and 0.5 mm wall thickness. The results show that the cold rolled Т91 steel thin walled tubes remain ductile and the material easily carries fractional strains. Finally the microstructure of the resulting tubes was examined and preliminary burst and tensile tests were performed showing properties comparable to those of T91 plate material.  相似文献   

7.
The reduced activation martensitic steel (RAFM) EUROFER is foreseen as a structural material in test breeder module (TBM) in ITER and breeder blanket in DEMO design. In a number of irradiation experiments conducted in high flux reactor (HFR) in Petten EUROFER was used as a containment wall of the breeder material, through which tritium permeation was monitored on line. Thus in EXOTIC-9/1 (EXtraction Of Tritium In Ceramics) experiment where Li2TiO3 pebbles were the breeder material, EUROFER was irradiated up to 1.3 dpa at 340–580 °C. In LIBRETTO experiments (LIBRETTO-4/1, -4/2 and -5) the breeder material was lead lithium eutectic which was in direct contact with the EUROFER containment wall. The neutron damage in steel achieved in the LIBRETTO experiments varied from 2 to 3.5 dpa. The irradiation temperature was 350 °C (LIBRETTO-4/1), 550 °C (LIBRETTO-4/2), and 300–500 °C (LIBRETTO-5).Tritium permeability was studied by varying the irradiation temperature and hydrogen concentration in the purge gas. From the analysis of the temperature transients performed in all four experiments yielded the tritium diffusion coefficients were derived, which appear to be factor ten lower than the literature data obtained in the gas driven permeation experiments.  相似文献   

8.
China Low Activation Martensitic steel (CLAMs), a kind of RAFM steel with Chinese intellectual property rights, is considered as the primary structural material for the China-designed ITER test blanket module (TBM). As one of the key issues in the fabrication of the fusion reactor, the welding technologies of CLAMs are reviewed. Emphasis is placed on the weldability of CLAMs by different welding methods, and on the properties of as-welded and post-weld heat-treated joints. Recent highlights in research and development for the welding of CLAMs show that proper welding procedure could provide welds with adequate tensile strength but the welds exhibit lower impact toughness compared with the base metal. Post-weld heat treatment (PWHT) and the application of ultrasonic energy during TIG welding could dramatically improve impact toughness. Research also shows that welds in CLAMs have sufficient resistance to swelling under irradiation as well as suitable compatibility with liquid LiPb. The microstructure, mechanical and other physical properties of welds are significantly different from those of the base metal due to the complicated welding thermal cycle. The weld joint is the area most likely to fail one or more of the design requirements within the fusion reactor. Therefore significant additional research is necessary to ensure safe application of welded CLAM steel for fusion reactor construction.  相似文献   

9.
Yttrium oxide dispersion strengthened (ODS) and non-ODS EUROFER produced by mechanical alloying and hot isostatic pressing have been subjected to isochronal annealing up to 1523 K, and the evolution of the open-volume defects and their thermal stability have been investigated using positron lifetime and coincidence Doppler broadening (CDB) techniques. Transmission electron microscopy (TEM) observations have also been performed on the studied samples to verify the characteristics of the surviving defects after annealing at 1523 K. The CDB spectra of ODS EUROFER exhibit a characteristic signature that is attributed to positron annihilation in Ar-decorated cavities at the oxide particle/matrix interfaces. The variation of the positron annihilation parameters with the annealing temperature shows three stages: up to 623 K, between 823 and 1323 K, and above 1323 K. Three-dimensional vacancy clusters, or voids, are detected in either materials in as-HIPed condition and after annealing at T ? 623 K. In the temperature range 823-1323 K, these voids’ growth and nucleation and the growth of other new species of voids take place. Above 1323 K, some unstable cavities start to anneal out, and cavities associated to oxide particles and other small precipitates survive to annealing at 1523 K. The TEM observations and the positron annihilation results indicate that these cavities should be decorated with Ar atoms absorbed during the mechanical alloying process.  相似文献   

10.
China Low Activation Martensitic (CLAM) steel is a leading candidate material for construction of the Chinese fusion reactor Test Blanket Module. The Simulated HAZ Continuous Cooling Transformation (SHCCT) diagram is developed via physical simulation, and the effects of thermal history on the microstructure and mechanical properties of the weld coarse-grain heat-affected zone (CGHAZ) in CLAM steel are evaluated. The results of thermal cycle simulation show that grain size increases and hardness decreases gradually with increasing heat input. Under certain conditions, especially when cooling times from 800 °C to 500 °C (T8/5) are larger than 136 s, delta ferrite may form which is deleterious for the TBM application. The amounts of delta ferrite are given under different T8/5. A SHCCT diagram of CLAM steel is developed using dilatometry and it predicts the AC1, AC3 and the Ms temperatures. With decreased cooling rate (larger T8/5), martensite laths widen and carbide precipitates grow. The results indicate that welding heat input should be taken into consideration and controlled in practical CLAM steel welding process applications.  相似文献   

11.
The effects of compressive stress applied at different temperatures on martensite transformation process of the T91 steel were studied by high-resolution differential dilatometer. The stress applied above 850 °C exhibits no influence on the martensite formation. The stress applied below 850 °C not only facilitates the formation of martensite, but also enhances the onset temperature of the martensite transformation. There are two different transformation mechanisms occurring: when the compressive stress is applied at high temperature, the mechanism of strain-induced martensite transformation takes place, as a result, the microstructure tends to be refined with irregular grain boundary. When the compressive stress is applied at low temperature, the stress-induced martensite transformation occurs, and its morphology is similar to that of thermal-activated martensite. In addition, it is summarized that 200 MPa is the critical stress and 440 °C is critical temperature for the onset of the stress-induced martensite transformation for the investigated T91 ferritic steel.  相似文献   

12.
High chromium ferritic/martensitic (F/M) steels are considered as the most promising structural materials for accelerator driven systems (ADS). One drawback that needs to be quantified is the significant hardening and embrittlement caused by neutron irradiation at low temperatures with production of spallation elements. In this paper irradiation effects on the mechanical properties of F/M steels have been studied and comparisons are provided between two ferritic/martensitic steels, namely T91 and EUROFER97. Both materials have been irradiated in the BR2 reactor of SCK-CEN/Mol at 300 °C up to doses ranging from 0.06 to 1.5 dpa. Tensile tests results obtained between −160 °C and 300 °C clearly show irradiation hardening (increase of yield and ultimate tensile strengths), as well as reduction of uniform and total elongation. Irradiation effects for EUROFER97 starting from 0.6 dpa are more pronounced compared to T91, showing a significant decrease in work hardening. The results are compared to our latest data that were obtained within a previous program (SPIRE), where T91 had also been irradiated in BR2 at 200 °C (up to 2.6 dpa), and tested between −170 °C and 300 °C. Irradiation effects at lower irradiation temperatures are more significant.  相似文献   

13.
Microstructure and mechanical properties of the weldments prepared from 9Cr–1W reduced activation ferritic martensitic (RAFM) steel using electron beam welding (EBW) process were studied. Microstructure consists of tempered lath martensite where precipitates decorating the boundaries in post weld heat treated (PWHT) condition. Lath and precipitate sizes were found to be finer in the weld metal than in base metal. Accordingly, hardness of the weld metal was found to be higher than the base metal. Tensile strength of the cross weldment specimen was 684 MPa, which was comparable with the base metal tensile strength of 670 MPa. On the other hand, DBTT of 9Cr–1W weld metal in as-welded condition is similar to that reported for TIG weld metal in PWHT condition.  相似文献   

14.
16MND5钢广泛应用于核岛承压容器构件,其焊接接头不可避免地会引入高的残余应力,而焊后热处理可有效消减焊接残余应力以克服应力腐蚀裂纹的影响。本工作利用轮廓法和中子衍射技术研究了焊后热处理对16MND5钢焊接残余应力的影响。结果表明,轮廓法与中子衍射测试结果在趋势和数值上取得了较好的一致性,焊后热处理使焊接态的残余应力峰值从约420 MPa降低至约210 MPa。同时,利用金相法和SEM研究了焊后热处理对焊缝区域组织结构的影响。结果表明,焊后热处理主要表现为贝氏体和少量自回火马氏体的焊缝中心组织转变为回火贝氏体和回火马氏体,热处理后的焊缝区晶粒明显长大。  相似文献   

15.
Through a consideration of the requirements for a DEMO-relevant blanket concept, Korea (KO) has proposed a He cooled molten lithium (HCML) blanket with ferritic steel (FS) as a structural material in the International Thermonuclear Experimental Reactor (ITER) program. The preliminary design and its performance of KO HCML test blanket module (TBM) are introduced in this paper. It uses He as a coolant at an inlet temperature of 300 °C and an outlet temperature up to 400 °C and Li is used as a tritium breeder by considering its potential advantages. Two layers of graphite are inserted as a reflector in the breeder zone to increase the tritium breeding ratio (TBR) and the shielding performances. A 3-D Monte Carlo analysis is performed with the MCCARD code for the neutronics and the total TBM power is designed to be 0.739 MW at a normal heat flux from the plasma side. From the analysis results with CFX-10 for the thermal-hydraulics, the He cooling path is determined and it shows that the maximum temperature of the first wall does not exceed 550 °C at the structural materials and the coolant velocities are 45 and 11.5 m/s in the first wall and breeding zone, respectively. The obtained temperature data is used in the thermal-mechanical analysis with ANSYS-10. The maximum von Mises equivalent stress of the first wall is 123 MPa and the maximum deformation of it is 3.73 mm, which is lower than the maximum allowable stress.  相似文献   

16.
CLAM (China Low Activation Martensitic) steel is considered as one of the candidate structural materials in liquid LiPb blanket concepts. Welding is one of the essential technologies for its practical application, CLAM steel weldment shows a great difference with base metal due to the effect of welding thermal cycle. In order to investigate the corrosion behavior and mechanism of CLAM weldments in liquid Pb-17Li, the experiments were performed by exposing the TIG weldment samples in flowing LiPb at 480 °C. The weight loss test of exposed specimens show that in 500 h, 1000 h dynamic conditions, corrosion resistance of CLAM steel weldment is poor, SEM analysis shows that the thicker martensite lath in weld area lead to higher corrosion amount, EDS results show that the influence of corrosion on surface elements is small, and surface corrosion is even, EDX analysis shows that the penetration of Pb-17Li does not exist in the joint. With the increasing of exposure time, the corrosion rate decreases. Metallographic analysis shows that the presence of Cr has great influence on the corrosion resistance of the steel matrix. The area short of Cr in thick martensite lath of CLAM steel weldment is easily corroded. After a series of theoretical and experimental analysis, a basic presumably corrosion behavior model is established, which makes contributions to the in-depth understanding of the corrosion mechanism of CLAM weldments.  相似文献   

17.
In this work metallography investigations and microhardness measurements have been performed on 15 ferritic/martensitic (FM) steels and 6 weld metals irradiated in the SINQ Target Irradiation Program (STIP). The results demonstrate that all the steels have quite similar martensite lath structures. However, the sizes of the prior austenite grain (PAG) of these steels are quite different and vary from 10 to 86 μm. The microstructure in the fusion zones (FZ) of electron-beam welds (EBWs) of 5 steels (T91, EM10, MANET-II, F82H and Optifer-IX) is similar in respect to the martensite lath structure and PAG size. The FZ of the inert-gas-tungsten weld (TIGW) of the T91 steel shows a duplex structure of large ferrite gains and martensite laths. The microhardness measurements indicate that the normalized and tempered FM steels have rather close hardness values. The unusual high hardness values of the EBW and TIGW of the T91 steel were detected, which suggests that these materials are without proper tempering or post-welding heat treatment.  相似文献   

18.
《Fusion Engineering and Design》2014,89(7-8):1113-1118
Licensing a pressurized nuclear equipment like the European Test Blanket Modules (TBM) Systems and, on the longer term, breeder blankets of a fusion demonstration reactor (DEMO), will require presenting to the Regulator and the Agreed Notified Body, along with design and safety analyses, supporting data like consolidated materials data and design limits, qualified fabrication procedures specifications and validated modeling tools that go often over today's state-of-the-art of nuclear industry. TBM systems feature indeed a newly developed structural material and advanced fabrication processes that were not referenced in any nuclear construction codes before, new type of functional materials, complex structures geometry and many interconnected sub-systems exchanging tritium by permeation or fluid mass transfer. For many years now, Europe has structured its development activities on TBM Systems toward the preparation of licensing. First tangible results are now arising: the EUROFER structural material has been introduced in the RCC-MRx nuclear code, supported by a database of several thousands of test records; TBM box fabrication procedure specifications are under standardization by industry in view of their qualification; a modeling tool for accurate simulation of tritium transport in TBM systems has been developed in view of refining conservative inventory data published in preliminary safety reports and optimizing waste management. Remaining challenges are identified and discussed.  相似文献   

19.
为更好地掌握焊后热处理(PWHT)对SA517 Gr.F调质钢焊接接头性能的影响,对SA517 Gr.F调质钢手工电弧焊(SMAW)焊接接头进行了焊态(AW)与PWHT试样力学性能和组织分布特征的对比分析研究。分析结果表明:PWHT与AW相比,焊接接头室温拉伸和360℃高温拉伸的抗拉强度均有所下降;焊缝和热影响区(HAZ)峰值硬度降低。PWHT降低了焊接接头的残余应力,但未能改善焊缝和HAZ的冲击性能。建议对于SA517 Gr.F调质钢若满足ASME规范案例N-71-18条件,可免除焊后热处理。   相似文献   

20.
For the European Helium Cooled Pebble Bed Test Blanket Module (HCPB-TBM) the reduced activation ferritic martensitic (RAFM) steel EUROFER 97 is selected as a structural material. During operation the TBM will be subjected to complex thermo-mechanical loadings which yield at certain positions of the structure to stresses beyond the design limits of the structural material. Preliminary structural analyses of the TBM have shown critical behavior in several key points of the structure. An improved design has been proposed and in order to identify and assess the problematic positions in the improved version of the TBM a non-linear failure analysis is performed, for which a coupled deformation damage model developed at KIT for RAFM steels and recently implemented in the finite element code ABAQUS is used. The thermal loads in the form of non-homogeneous temperature fields distributions are obtained from a thermal analysis performed using the finite element code ANSYS on the same structure. Importing the temperature fields into the finite element code ABAQUS and applying the remaining loads – coolant internal pressure and structural boundary conditions – non-linear simulations are conducted taking into account the ITER-typical cyclic nature of the loading. The simulation results are evaluated and discussed considering ratcheting and damage at most critical highly loaded areas of the structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号