首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Over the past years, a tremendous effort has been made to develop an intervertebral disc (IVD) prosthesis with suitable biological, mechanical and transport properties. However, it has been frequently reported that current prostheses undergo failure mainly due to the mismatch between the mechanical properties of the conventional device and the spine segment to be replaced. The aim of the present work was to develop a poly(2-hydroxyethyl methacrylate)/poly(methyl methacrylate) (PHEMA/PMMA) (80/20 w/w) semi-interpenetrating polymer network (s-IPN) composite hydrogel reinforced with poly(ethylene terephthalate) (PET) fibres, and to investigate the static and dynamic mechanical properties. Filament winding and moulding technologies were employed to obtain the composite IVD prostheses with the unique complex structure that is peculiar to the natural IVD. The compressive properties analysis showed the typical J-shaped stress-strain curve which is displayed by natural IVDs. Compressive modulus varied from 84 to 120 MPa, as a function of the strain rate, and stress was higher than 10 MPa. These values are in the range of those of the natural lumbar IVDs. No failure of the prostheses has occurred during fatigue test performed for ten million cycles in physiological solution. Dynamic mechanical tests have confirmed the composite IVD prostheses exhibited appropriate viscoelastic properties.  相似文献   

2.
The thermodynamic miscibility, morphology, phase distribution, mechanical properties, surface properties, water sorption, bacterial adhesion and cytotoxicity of semi-interpenetrating polymer networks (semi-IPNs) based on crosslinked polyurethane (PU) and poly(hydroxyethylmethacrylate) (PHEMA) were studied to give an insight into their structure and properties. The free energies of mixing of the two polymers in semi-IPNs have been determined and it was shown that the values are positive and depend on the amount of PHEMA. This demonstrates that the components are immiscible, the extent of which is dependent upon variations in composition. The morphology of the semi-IPNs was analyzed with scanning electron microscopy and tapping mode atomic force microscopy (TMAFM). The micrographs of the semi-IPNs and TMAFM phase images indicated that distinct phase separation at the nanometer scale is observed. The mechanical properties reflect the changes in structure of semi-IPNs with composition. The stress at break increases from 3.4 MPa to 23.9 MPa, and the Young’s modulus from 12.7 MPa up to 658.5 MPa with increasing amounts of PHEMA, but strain at break has a maximum at 40.4% PHEMA. The bacterial adhesion and cytotoxicity data suggest that semi-IPNs with PHEMA content above 22% may be used for biomedical material applications.  相似文献   

3.
A polymer material system has been developed to propose an injectable, UV and insitu curable hydrogel with properties similar to the native nucleuspulposus of intervertebral disc. Neat hydrogels based on Tween® 20 trimethacrylates (T3) and N-vinyl-2-pyrrolidone (NVP) and composite hydrogels of same composition reinforced by nano-fibrillated cellulose were synthesized with different T3 concentrations and their curing kinetics was investigated by photorheology using UV light. The T3 concentration has an influence on the time of curing and final shear stiffness of the material. NFC does not alter the time of curing but increases the final mechanical performance of the hydrogels for a same chemical composition. Hydrogel samples, neat and composite, were then tested in unconfined compression at different hydration stages and in confined compression and their elastic modulus was determined. The amount of fluid present in the network is mostly responsible for the mechanical properties and NFC fibres proved to be an efficient reinforcement. The elastic modulus ranged from 0.02 to 8 MPa. Biocompatibility studies showed that cells are confluent at 90% and do not show any morphology change when in contact with the hydrogel. The present hydrogel can therefore be considered for NP replacement.  相似文献   

4.
Natural network-structured hydrogels (e.g. bacterial cellulose (BC)) can be synthesised with specific artificial hydrogels (e.g. poly(2-hydroxyethyl methacrylate) (PHEMA)) to form a tougher and stronger nanofibre-reinforced composite hydrogel, which possesses micro- and nano-porous structure. These synthetic hydrogels exhibit a number of advantages for biomedical applications, such as good biocompatibility and better permeability for molecules to pass through. In this paper, the mechanical properties of this nanofibre-reinforced hydrogel containing BC and PHEMA have been characterised in terms of their tangent modulus and fracture stress/strain by uniaxial compressive testing. Numerical simulations based on Mooney-Rivlin hyperelastic theory are also conducted to understand the internal stress distribution and possible failure of the nanofibre-reinforced hydrogel under compression. By comparing the mechanical characteristics of BC, PHEMA, and PHEMA-based nanofibre reinforced hydrogel (BC-PHEMA) under the compression, it is possible to develop a suitable scaffold for tissue engineering on the basis of fundamental understanding of mechanical and fracture behaviours of nanofibre-reinforced hydrogels.  相似文献   

5.
In the present study, the synthesis of a semi-Interpenetrating Polymer Network (semi-IPN) incorporating linear poly-(ɛ-caprolactone) (PCL) into cross-linked poly-(2-hydroxyethylmethacrilate) (PHEMA) reinforced with hydroxyapatite (HA) has been described. The aim of this study was to improve the mechanical and biological performance of the PHEMA/PCL in the hydrated state, for orthopaedic applications. The swelling behaviour, mechanical (compressive and tensile) and surface chemical-physical (morphology, stoichiometric composition) characterisation of the novel HA reinforced composite based on PHEMA/PCL polymer matrix, PHEMA/PCL 70/30 (w/w) + 50% (w/w) HA (PHEMA/PCL/HA), were evaluated. Furthermore, a preliminary in vitro biological evaluation was also performed on the composite using a fully characterised primary human osteoblast-like (HOB) cell model. The inclusion of HA in the composite improved the mechanical performance in the swollen state, with values of elastic modulus in a similar range to that of trabecular bone. The composite surfaces showed a porous, irregular topography with the presence of: oxygen (O), carbon (C); phosphorous (P); calcium (Ca) where the Ca/P ratio was 1.78. Biological evaluation indicated undetectable weight loss of the sample, no release of toxic leachables from the composite and pH values within an acceptable range for cell growth. The results indicate that the novel PHEMA/PCL/HA composite is a promising candidate as filler or substitute for spongy bone for orthopaedic applications.  相似文献   

6.
Semi-interpenetrating polymer network (semi-IPN) hydrogels composed of -chitosan and poly(ethylene glycol) diacrylate macromer (PEGM) were synthesized and characterized for the application as potential biomedical materials. The mixture of PEGM and -chitosan, dissolved in water including a small amount of acetic acid, was cast to prepare hydrogel films, followed by a subsequent crosslinking with 2,2-dimethoxy-2-phenylacetophenone as a non-toxic photoinitiator by ultraviolet irradiation. Photocrosslinked hydrogels exhibited relatively high equilibrium water content in the range 77–83% which is mainly attributed to the free water content rather than to the bound water, hydrogen bonded with components in semi-IPN hydrogels. The crystallinity, thermal properties and mechanical properties of semi-IPN hydrogels were studied. All the photocrosslinked hydrogels revealed a remarkable decrease in crystallinity. The glass transition temperatures, Tg, of crosslinked PEGM segment in semi-IPNs increased compared with poly(ethylene glycol) itself. However, with increasing -chitosan content their Tg decreased owing to the higher degree of crosslinking. The tensile strengths of semi-IPNs in dry state were rather high, but those of hydrogels in wet state decreased drastically.  相似文献   

7.
交联剂对PVP/PCL共聚凝胶性能的影响   总被引:2,自引:0,他引:2  
研究了N,N-亚甲基双丙烯酰胺(NMBA)、戊二醛(GDA)两种交联剂对聚乙烯吡咯烷酮(PVP)/聚己内酯(PCL)共聚水凝胶性能的影响。交联剂含量低于NVP的0.7%时,GDA交联凝胶平衡溶胀率ESR较高,高于0.7%时,NMBA交联凝胶的ESR较高。DSC分析表明,GDA交联凝胶结合水含量较高。NMBA、GDA交联凝胶的Fick动力学参数n分别为0.462、0.267,说明GDA交联凝胶的溶胀过程偏离Fick模型。降解实验表明,GDA交联凝胶中PCL降解较慢。力学性能测试表明,GDA交联凝胶表现出较高的断裂强度和断裂伸长率。  相似文献   

8.
Nano-sized hydroxyapatite (nHA) and carbonate-substituted hydroxyapatite (nCHA) particles were incorporated into a poly-2-hydroxyethylmethacrylate/polycaprolactone (PHEMA/PCL) hydrogel at a filler content of 10 wt%. Fourier transform infrared absorption, transmission electron microscopy, x-ray diffraction and scanning electron microscopy were used to analyse the physical and chemical characteristics of the calcium phosphate fillers and resultant composites. Nano-sized calcium phosphate particles were produced with a needle-like morphology, average length of 50 nm and an aspect ratio of 3. The nanoparticles were uniformly distributed in the polymer matrix. The addition of both HA and CHA in nano-form enhanced the bioactivity and biocompatibility of the PHEMA/PCL matrix. The carbonate-substitution has allowed for improved bioactivity and biocompatibility of the resultant composite, indicating the potential of this material for use in bone tissue engineering.  相似文献   

9.
Abstract

Nano-sized hydroxyapatite (nHA) and carbonate-substituted hydroxyapatite (nCHA) particles were incorporated into a poly-2-hydroxyethylmethacrylate/polycaprolactone (PHEMA/PCL) hydrogel at a filler content of 10 wt%. Fourier transform infrared absorption, transmission electron microscopy, x-ray diffraction and scanning electron microscopy were used to analyse the physical and chemical characteristics of the calcium phosphate fillers and resultant composites. Nano-sized calcium phosphate particles were produced with a needle-like morphology, average length of 50 nm and an aspect ratio of 3. The nanoparticles were uniformly distributed in the polymer matrix. The addition of both HA and CHA in nano-form enhanced the bioactivity and biocompatibility of the PHEMA/PCL matrix. The carbonate-substitution has allowed for improved bioactivity and biocompatibility of the resultant composite, indicating the potential of this material for use in bone tissue engineering.  相似文献   

10.
目的提高聚己内酯(PCL)薄膜对氧气及水蒸汽的阻隔性。方法利用双螺杆挤出机,对PCL与聚碳酸亚丙酯(PPC)进行共混挤出制备薄膜材料,并对PCL/PPC共混膜的相容、热学、阻隔及力学等性能进行测量。结果当PPC含量较少或较多时,PCL与PPC具有一定的相容性,而在中间含量时出现了相分离;PCL/PPC薄膜对氧气的透过系数和水蒸气的透过率随着PPC含量的增加而降低;PPC的加入提高了PCL的强度及模量,在共混比例较小时,共混膜有相对较好的抗撕裂性能。结论添加适量的PPC能使PCL表现出更好的氧气和水蒸汽阻隔性及较好的力学性能。  相似文献   

11.
The time-dependent mechanical response of the canine intervertebral disc in axial compression is related to the response of the various levels of the hierarchical organization. In stress relaxation the initial transverse bulging of the disc recovers almost completely with time. The corresponding decrease in volume correlates with the measured loss of water from the disc. The three-dimensional architecture of the disc, examined by sectioning isolated discs that had been fixed in compression, accommodates the volume displacement. Bulging of the peripheral lamellae is minimized by the curvature of the vertebral interface and by stress-driven transport of water out of the disc through the cartilage end-plates into the vertebral bodies. Even though the disc undergoes macroscopic compression, the fibres of the lamellae are loaded in tension and their mode of deformation is compared with that of other connective tissues such as tendon and intestine.  相似文献   

12.
Hydrogel-based biomaterial systems have great potential for tissue reconstruction by serving as temporary scaffolds and cell delivery vehicles for tissue engineering (TE). Hydrogels have poor mechanical properties and their rapid degradation limits the development and application of hydrogels in TE. In this study, nanofiber reinforced composite hydrogels were fabricated by incorporating electrospun poly(ε-caprolactone) (PCL)/gelatin 'blend' or 'coaxial' nanofibers into gelatin hydrogels. The morphological, mechanical, swelling and biodegradation properties of the nanocomposite hydrogels were evaluated and the results indicated that the moduli and compressive strengths of the nanofiber reinforced hydrogels were remarkably higher than those of pure gelatin hydrogels. By increasing the amount of incorporated nanofibers into the hydrogel, the Young's modulus of the composite hydrogels increased from 3.29 ± 1.02 kPa to 20.30 ± 1.79 kPa, while the strain at break decreased from 66.0 ± 1.1% to 52.0 ± 3.0%. Compared to composite hydrogels with coaxial nanofibers, those with blend nanofibers showed higher compressive strength and strain at break, but with lower modulus and energy dissipation properties. Biocompatibility evaluations of the nanofiber reinforced hydrogels were carried out using bone marrow mesenchymal stem cells (BM-MSCs) by cell proliferation assay and immunostaining analysis. The nanocomposite hydrogel with 25 mg ml(-1) PCL/gelatin 'blend' nanofibers (PGB25) was found to enhance cell proliferation, indicating that the 'nanocomposite hydrogels' might provide the necessary mechanical support and could be promising cell delivery systems for tissue regeneration.  相似文献   

13.
The aim of this study was to fabricate three-dimensional (3D) porous chitosan/poly(ε-caprolactone) (PCL) hydrogels with improved mechanical properties for tissue engineering applications. A modified emulsion lyophilisation technique was developed to produce 3D chitosan/PCL hydrogels. The addition of 25 and 50 wt% of PCL into chitosan substantially enhanced the compressive strength of composite hydrogel 160 and 290%, respectively, compared to pure chitosan hydrogel. The result of ATR–FTIR imaging corroborated that PCL and chitosan were well mixed and physically co-existed in the composite structures. The composite hydrogels were constructed of homogenous structure with average pore size of 59.7 ± 14 μm and finer pores with average size of 4.4 ± 2 μm on the wall of these larger pores. The SEM and confocal laser scanning microscopy images confirmed that fibroblast cells were attached and proliferated on the 3D structure of these composite hydrogels. The composite hydrogels acquired in this study possessed homogeneous porous structure with improved mechanical strength and integrity. They may have a high potential for the production of 3D hydrogels for tissue engineering applications.  相似文献   

14.
Composite materials based on poly(ε-caprolactone) (PCL) and carbon nanofibres (CNFs) were processed by solvent casting and electrospinning. The main objective was to investigate the effects of the CNFs on the microstructural, thermal and mechanical properties of the PCL matrix composites processed by two different routes. The hybrid materials obtained with different CNF content (1, 3 and 7 wt%) were analysed by electron microscopy (FESEM), differential scanning calorimeter (DSC), thermogravimetry (TGA) and mechanical testing. The composite films showed a good dispersion in the PCL matrix while electrospun samples were consisted of homogeneous and uniform fibres up to 3 wt% CNFs with average fibre diameter ranged between 0.5 and 1 μm. Composite films and mats revealed an increased crystallization temperature with respect to the neat PCL matrix. Mechanical properties of solvent cast films and electrospun mats were assessed by uniaxial tensile tests. A stiffness increase was achieved in PCL films depending on the CNF content, while mechanical properties of mats were only slightly affected by CNF introduction.  相似文献   

15.
Polycaprolactone (PCL) was reinforced with natural fibres as they not only permit a substantial reduction of the material costs, but also play a role as reinforcement in mechanical properties. This work was focused on the estimation of mechanical and thermal behaviour based on PCL and Pine Cone particles (PCP) filler at different weight percentages (0, 5, 10, 15, 30 and 45 wt%). Tests results indicated considerable improvement in mechanical properties, corresponding to a gain in impact strength and % elongation of 6 and 9.2% at 15 wt% particle loading, respectively. Some decrease in thermal stability was observed for composites with increasing filler content where as composite at 15% PCP was not significantly affected. Lower melting and crystallization enthalpies and higher crystallinity values were obtained for bio-composites compared with neat PCL. Some decrease in thermal stability and increase in oxygen and water vapour barrier properties were also observed for composites with increasing filler content.  相似文献   

16.
将导电聚合物引入到水凝胶网络中的导电高分子基导电水凝胶,因结合了水凝胶的三维网络结构、良好的生物相容性、优异的力学性能等和导电高分子良好电学性能等优点而被广泛研究,特别是以聚苯胺(PANI)为导电高分子的导电水凝胶.但PANI不溶于水,因此很难制备PANI基导电水凝胶.本文以制备高强度PANI基导电水凝胶为目的,尝试将...  相似文献   

17.
Water absorption of natural fibre plastic composites is a serious concern especially for their potential outdoor applications. In this research, jute fibre reinforced with unsaturated polyester composites are subjected to water immersion tests in order to study the effects of water absorption in its mechanical properties. Water absorption tests were conducted by immersing composite specimens into three different environmental conditions included distilled water, sea water and acidic solutions at room temperature for a period up to 3 weeks. Water absorption curves obtained and characteristic parameter D (diffusion coefficient) and Mm (maximum moisture content) were determined. The water absorption of jute fibre reinforced unsaturated polyester composites were found to follow a so-called pseudo-Fickian behaviour. The effects of the immersion treatment on the flexural and compression characteristics were investigated. The flexural and compression properties were found to decrease with the increase in percentage water uptake. These flexural and compression behaviours were explained by the plasticization of the matrix–fibre interface and swelling of the jute fibres.  相似文献   

18.
Poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogels are widely used as biomaterials. Due to their unique combination of biocompatibility and good mechanical properties, they have potential as scaffolds for tissue engineering applications. To this purpose, topographic and chemical patterning at the nano- to the mesoscale is crucial in order to favor and to characterize cell adhesion and proliferation. Here we report the characterization of as-prepared and patterned PHEMA hydrogels, produced by conventional radical polymerization in water and dimethylformamide. We have obtained chemical and morphological micro- and nanoscale patterning by atomic force microscopy based lithography. We also demonstrate that it is possible to incorporate carbon nanoparticles in the hydrogel matrix by supersonic cluster beam deposition.  相似文献   

19.
In the present work biodegradable pH-sensitive polycaprolactone/acrylic acid (PCL/AA) hydrogels have been developed using ethylene glycol dimethacrylate (EGDMA) as a cross-linker and benzoyl peroxide as initiator. For these prepared hydrogels swelling studies, sol-gel fraction analysis and porosity measurements were performed. Results show that swelling of the hydrogels decreases on increasing the concentration of PCL and EGDMA, however swelling of hydrogels increases on increasing the concentration of AA. Results of sol-gel fraction analysis show that gel fraction increases on increasing concentration of monomer AA, polymer PCL as well as cross-linker EGDMA. As far as porosity is concerned, it increases on increasing the concentration of AA and PCL while porosity decreases on increasing the concentration of EGDMA. Hydrogels were characterized by measuring diffusion coefficient (D) and equilibrium water content (EWC). Network formation, morphology and crystallinity of PCL/AA hydrogels were investigated using FTIR, SEM and XRD, respectively. Tramadol hydrochloride was loaded as model drug and its release pattern was analysed using various kinetic models like zero order, first order, Higuchi and Peppas. Results indicated that most of the samples followed non-Fickian release mechanism.  相似文献   

20.
Self-reinforced polymer composites are gaining increasing interest due to their higher ductility compared to traditional glass and carbon fibre composites. Here we consider a class of PET composites comprising woven PET fibres in a PET matrix. While there is a significant literature on the development of these materials and their mechanical properties, little progress has been reported on constitutive models for these composites. Here we report the development of an anisotropic visco-plastic constitutive model for PET composites that captures the measured anisotropy, tension/compression asymmetry and ductility. This model is implemented in a commercial finite element package and shown to capture the measured response of PET composite plates and beams in different orientations to a high degree of accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号