首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Swimmers in nature use body undulations to generate propulsive and manoeuvring forces. The anguilliform kinematics is driven by muscular actions all along the body, involving a complex temporal and spatial coordination of all the local actuations. Such swimming kinematics can be reproduced artificially, in a simpler way, by using the elasticity of the body passively. Here, we present experiments on self-propelled elastic swimmers at a free surface in the inertial regime. By addressing the fluid–structure interaction problem of anguilliform swimming, we show that our artificial swimmers are well described by coupling a beam theory with the potential flow model of Lighthill. In particular, we show that the propagative nature of the elastic wave producing the propulsive force is strongly dependent on the dissipation of energy along the body of the swimmer.  相似文献   

2.
Fish larvae may intercept their own wake during sharp turns, which might affect their escape performance. We analysed C-starts of larval zebrafish (Danio rerio, Hamilton, 1822) using a computational fluid dynamics approach that simulates free swimming (swimming trajectory is determined by fluid forces) by coupling hydrodynamics and body dynamics. The simulations show that fish may intercept their own wake when they turn by 100–180°. During stage 1 of a C-start, the fish generates a strong jet at the tail that is shed into the wake. During stage 2, the fish intercepts this wake. Counterfactual simulations showed that wake interception increased the lateral force on the fish and reduced the fish''s turning angle by more than 5°. Wake interception caused no significant acceleration tangential to the trajectory of the fish and did not affect total power output. While experimental and simulation evidence suggests that fish larvae can either undershoot or intercept but not overshoot their wake, our simulations show that larger fish might be able to avoid intercepting their wake by either under- or overshooting. As intercepting its own wake modifies the fish''s escape trajectory, fish should account for this effect when planning their escape route.  相似文献   

3.
The electronic structure of boron–hydrogen complex and boron pair in diamond are studied by first-principles density-functional calculations with supercell models. The electronic structure calculated for the B–H complexes with C2v or C3v symmetry and the nearest-neighbor B pair is used to interpret recent experimental results such as B 1s x-ray photoemission spectroscopy, 11B nuclear quadruple resonance and B K-edge x-ray absorption spectroscopy, which cannot be explained solely by the isolated substitutional boron.  相似文献   

4.
Molar heat capacities at constant volume (Cv,) for nitrogen have been measured with an automated adiabatic calorimeter. The temperatures ranged from 65 to 300 K, while pressures were as high as 35 MPa. Calorimetric data were obtained for a total of 276 state conditions on 14 isochores. Extensive results which were obtained in the saturated liquid region (Cv(2) and Cσ) demonstrate the internal consistency of the Cv (ρ,T) data and also show satisfactory agreement with published heat capacity data. The overall uncertainty of the Cv values ranges from 2% in the vapor to 0.5% in the liquid.  相似文献   

5.
Although undulatory swimming is observed in many organisms, the neuromuscular basis for undulatory movement patterns is not well understood. To better understand the basis for the generation of these movement patterns, we studied muscle activity in the nematode Caenorhabditis elegans. Caenorhabditis elegans exhibits a range of locomotion patterns: in low viscosity fluids the undulation has a wavelength longer than the body and propagates rapidly, while in high viscosity fluids or on agar media the undulatory waves are shorter and slower. Theoretical treatment of observed behaviour has suggested a large change in force–posture relationships at different viscosities, but analysis of bend propagation suggests that short-range proprioceptive feedback is used to control and generate body bends. How muscles could be activated in a way consistent with both these results is unclear. We therefore combined automated worm tracking with calcium imaging to determine muscle activation strategy in a variety of external substrates. Remarkably, we observed that across locomotion patterns spanning a threefold change in wavelength, peak muscle activation occurs approximately 45° (1/8th of a cycle) ahead of peak midline curvature. Although the location of peak force is predicted to vary widely, the activation pattern is consistent with required force in a model incorporating putative length- and velocity-dependence of muscle strength. Furthermore, a linear combination of local curvature and velocity can match the pattern of activation. This suggests that proprioception can enable the worm to swim effectively while working within the limitations of muscle biomechanics and neural control.  相似文献   

6.
Two infrared absorption bands of CH2D2 have been analyzed in the semirigid rotor approximation. These are the A-type band at 2671.67 cm−1 and the C-type band at 4425.61 cm−1. The A-type band has previously been assigned as v3+v9, and the C-type band is tentatively assigned as v3+v6 The upper state of the A-type band is perturbed presumably by the close lying level 2v5. This interaction has not been investigated. The following values were found for the rotational constants of the ground vibrational state: A0=4.303 cm−1, B0= 3.504 cm−1, C0= 3.049 cm−1.  相似文献   

7.
Metal release from implantable metals and the properties of oxide films formed on alloy surfaces were analyzed, focusing on the highly biocompatible Ti–15Zr–4Nb–4Ta alloy. The thickness and electrical resistance (Rp) of the oxide film on such an alloy were compared with those of other implantable metals. The quantity of metal released during a 1-week immersion test was considerably smaller for the Ti–15Zr–4Nb–4Ta than the Ti–6Al–4V alloy. The potential (E10) indicating a current density of 10 μA cm−2 estimated from the anodic polarization curve was significantly higher for the Ti–15Zr–4Nb–4Ta than the Ti–6Al–4V alloy and other metals. Moreover, the oxide film (4–7 nm thickness) formed on the Ti–15Zr–4Nb–4Ta surface is electrochemically robust. The oxide film mainly consisted of TiO2 with small amounts of ZrO2, Nb2O5 and Ta2O5 that made the film electrochemically stable. The Rp of Ti–15Zr–4Nb–4Ta was higher than that of Ti–6Al–4V, i.e. 0.9 Ω cm2 in 0.9% NaCl and 1.3 Ω cm2 in Eagle''s medium. This Rp was approximately five-fold higher than that of stainless steel, which has a history of more than 40 years of clinical use in the human body. Ti–15Zr–4Nb–4Ta is a potential implant material for long-term clinical use. Moreover, E10 and Rp were found to be useful parameters for assessing biological safety.  相似文献   

8.
The rate of the reaction NO + N→ N2+O has been measured to be 1.0±0.5×1013 cm3 moles−1 sec−1 at room temperature. The heterogeneous reactions N+O→NO and O + O→O2 were observed to occur in the ion source of the mass spectrometer.  相似文献   

9.
The effect of viscous dissipation on mixed convection flow about a rotating sphere is investigated analytically. A method based on Merk's type of series expansions is used to obtain the heat transfer rate and the skin-friction coefficients. Numerical computations were carried out for Eckert number Ec ranging from 0 to 0.1, rotation parameter B = 0, 1, 4 and buoyancy parameter ranging from 0 to 1 at various angular positions. As viscous dissipation increases heat transfer rate decreases. It is found that for Ec > 0, a critical value of B (say Bcri) exist such that Nu ReR?12 increases as B increases up to B = Bcri and then decreases. Bcri decreases with Ec when the angle is fixed or decreases with angle when Ec is fixed. When Ec > 0, possibly there exist a λ, say λcri, such that Nu ReR?12 increases with λ up to λ = λcri and then decreases. Also the effect of viscous dissipation on skin friction is investigated.  相似文献   

10.
The infrared spectrum of the v2+v6 band of C13C12H6 has been analyzed and a value of B0= 0.64865 ±0.00005 cm−1 determined. When this value is combined with that found in recent work on isotopically normal ethane, a “rs value of 1.527±0.004 A for the carboncarbon bond distance is obtained. (Uncertainties are probable errors.)  相似文献   

11.
Ternary zincblende-derived I–III–VI2 chalcogenide and II–IV–V2 pnictide semiconductors have been widely studied and some have been put to practical use. In contrast to the extensive research on these semiconductors, previous studies into ternary I–III–O2 oxide semiconductors with a wurtzite-derived β-NaFeO2 structure are limited. Wurtzite-derived β-LiGaO2 and β-AgGaO2 form alloys with ZnO and the band gap of ZnO can be controlled to include the visible and ultraviolet regions. β-CuGaO2, which has a direct band gap of 1.47 eV, has been proposed for use as a light absorber in thin film solar cells. These ternary oxides may thus allow new applications for oxide semiconductors. However, information about wurtzite-derived ternary I–III–O2 semiconductors is still limited. In this paper we review previous studies on β-LiGaO2, β-AgGaO2 and β-CuGaO2 to determine guiding principles for the development of wurtzite-derived I–III–O2 semiconductors.  相似文献   

12.
A pressure cell was constructed using a pair of type II diamonds for study of infrared spectra of solids in the 1- to 15-micron region. Using commercial infrared equipment, spectra can be studied routinely to calculated pressures as high as 30,000 atmospheres. Under pressure, bands generally shift to higher frequencies and decrease in intensity. The magnitude of both changes depends on the mode of vibration. Occasionally major changes in spectra occur. In calcite the carbon-oxygen symmetric stretching, mode v1, becomes active at elevated pressures while the doubly degenerate v3, stretching, and v4, bending, frequencies split. From the shift in frequency of v1 with pressure the “compressibility”, [(−1/Ro) (dR/dp)], of the C—O bond length, R, is calculated to be 2.8×10−7/atmosphere. Major spectral changes are not observed in the same pressure ranges in other carbonates having the calcite or aragonite structures. The results for calcite may be explained by a shift of the CO3= ion from the trigonal axis under pressure.  相似文献   

13.
The NPDGamma experiment will measure the parity-violating directional gamma ray asymmetry Aγ in the reaction n+pd+γ. Ultimately, this will constitute the first measurement in the neutron-proton system that is sensitive enough to challenge modern theories of nuclear parity violation, providing a theoretically clean determination of the weak pion-nucleon coupling. A new beam-line at the Los Alamos Neutron Science Center (LANSCE) delivers pulsed cold neutrons to the apparatus, where they are polarized by transmission through a large volume polarized 3He spin filter and captured in a liquid para-hydrogen target. The 2.2 MeV gamma rays from the capture reaction are detected in an array of CsI(Tl) scintillators read out by vacuum photodiodes operated in current mode. We will complete commissioning of the apparatus and carry out a first measurement at LANSCE in 2004–05, which would provide a statistics-limited result for Aγ accurate to a standard uncertainty of ±5 × 10−8 level or better, improving on existing measurements in the neutron-proton system by a factor of 4. Plans to move the experiment to a reactor facility, where the greater flux would enable us to make a measurement with a standard uncertainty of ±1 × 10−8, are actively being pursued for the longer term.  相似文献   

14.
Small metazoan paddlers, such as crustacean larvae (nauplii), are abundant, ecologically important and active swimmers, which depend on exploiting viscous forces for locomotion. The physics of micropaddling at low Reynolds number was investigated using a model of swimming based on slender-body theory for Stokes flow. Locomotion of nauplii of the copepod Bestiolina similis was quantified from high-speed video images to obtain precise measurements of appendage movements and the resulting displacement of the body. The kinematic and morphological data served as inputs to the model, which predicted the displacement in good agreement with observations. The results of interest did not depend sensitively on the parameters within the error of measurement. Model tests revealed that the commonly attributed mechanism of ‘feathering’ appendages during return strokes accounts for only part of the displacement. As important for effective paddling at low Reynolds number is the ability to generate a metachronal sequence of power strokes in combination with synchronous return strokes of appendages. The effect of feathering together with a synchronous return stroke is greater than the sum of each factor individually. The model serves as a foundation for future exploration of micropaddlers swimming at intermediate Reynolds number where both viscous and inertial forces are important.  相似文献   

15.
Biological hydrogels have been increasingly sought after as wound dressings or scaffolds for regenerative medicine, owing to their inherent biofunctionality in biological environments. Especially in moist wound healing, the ideal material should absorb large amounts of wound exudate while remaining mechanically competent in situ. Despite their large hydration, however, current biological hydrogels still leave much to be desired in terms of mechanical properties in physiological conditions. To address this challenge, a multi-scale approach is presented for the synthetic design of cyto-compatible collagen hydrogels with tunable mechanical properties (from the nano- up to the macro-scale), uniquely high swelling ratios and retained (more than 70%) triple helical features. Type I collagen was covalently functionalized with three different monomers, i.e. 4-vinylbenzyl chloride, glycidyl methacrylate and methacrylic anhydride, respectively. Backbone rigidity, hydrogen-bonding capability and degree of functionalization (F: 16 ± 12–91 ± 7 mol%) of introduced moieties governed the structure–property relationships in resulting collagen networks, so that the swelling ratio (SR: 707 ± 51–1996 ± 182 wt%), bulk compressive modulus (Ec: 30 ± 7–168 ± 40 kPa) and atomic force microscopy elastic modulus (EAFM: 16 ± 2–387 ± 66 kPa) were readily adjusted. Because of their remarkably high swelling and mechanical properties, these tunable collagen hydrogels may be further exploited for the design of advanced dressings for chronic wound care.  相似文献   

16.
Self-diffusion coefficients of poly(ethylene glycol)2k-derivatized lipids (DSPE-PEG2k-CF) in glass-supported DOPC phospholipid bilayers are ascertained from quantitative fluorescence recovery after photobleaching (FRAP). We developed a first-order reaction–diffusion model to ascertain the bleaching constant, mobile fraction and lipopolymer self-diffusion coefficient Ds at concentrations in the range c ≈ 0.5–5 mol%. In contrast to control experiments with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl) (ammonium salt) (DOPE-NBD) in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), the lipopolymer self-diffusion coefficient decreases monotonically with increasing concentration, without a distinguishing mushroom-to-brush transition. Our data yield a correlation Ds = D0/(1 + αc), where D0 ≈ 3.36 µm2 s−1 and α ≈ 0.56 (with c expressed as a mole percent). Interpreting the dilute limit with the Scalettar–Abney–Owicki statistical mechanical theory for transmembrane proteins yields an effective disc radius ae ≈ 2.41 nm. On the other hand, the Bussell–Koch–Hammer theory, which includes hydrodynamic interactions, yields ae ≈ 2.92 nm. As expected, both measures are smaller than the Flory radius of the 2 kDa poly(ethylene glycol) (PEG) chains, RF ≈ 3.83 nm, and significantly larger than the nominal radius of the phospholipid heads, al ≈ 0.46 nm. The diffusion coefficient at infinite dilution D0 was interpreted using the Evans–Sackmann theory, furnishing an inter-leaflet frictional drag coefficient bs ≈ 1.33 × 108 N s m−3. Our results suggest that lipopolymer interactions are dominated by the excluded volume of the PEG-chain segments, with frictional drag dominated by the two-dimensional bilayer hydrodynamics.  相似文献   

17.
The swimming locomotion of fish involves a complex interplay between a deformable body and induced flow in the surrounding fluid. While innovative robotic devices, inspired by physicomechanical designs evolved in fish, have been created for underwater propulsion of large swimmers, scaling such powerful locomotion into micro‐/nanoscale propulsion remains challenging. Here, a magnetically propelled fish‐like artificial nanoswimmer is demonstrated that emulates the body and caudal fin propulsion swimming mechanism displayed by fish. To mimic the deformable fish body for periodic shape changes, template‐electrosynthesized multisegment nanowire swimmers are used to construct the artificial nanofishes (diameter 200 nm; length 4.8 μm). The resulting nanofish consists a gold segment as the head, two nickel segments as the body, and one gold segment as the caudal fin, with three flexible porous silver hinges linking each segment. Under an oscillating magnetic field, the propulsive nickel elements bend the body and caudal fin periodically to generate travelling‐wave motions with speeds exceeding 30 μm s?1. The propulsion dynamics is studied theoretically using the immersed boundary method. Such body‐deformable nanofishes exhibit a high swimming efficiency and can serve as promising biomimetic nanorobotic devices for nanoscale biomedical applications.  相似文献   

18.
Nine diffusion couples and 32 key samples were prepared to map the phase diagram of the Ca–Mg–Zn system. Phase relations and solubility limits were determined for binary and ternary compounds using scanning electron microscopy, electron probe microanalysis and x-ray diffraction (XRD). The crystal structure of the ternary compounds was studied by XRD and electron backscatter diffraction. Four ternary intermetallic (IM) compounds were identified in this system: Ca3MgxZn15−x (4.6 ⩽ x ⩽ 12 at 335 °C, IM1), Ca14.5Mg15.8Zn69.7 (IM2), Ca2Mg5Zn13 (IM3) and Ca1.5Mg55.3Zn43.2 (IM4). Three binary compounds were found to have extended solid solubility into ternary systems: CaZn11, CaZn13 and Mg2Ca form substitutional solid solutions where Mg substitutes for Zn atoms in the first two compounds, and Zn substitutes for both Ca and Mg atoms in Mg2Ca. The isothermal section of the Ca–Mg–Zn phase diagram at 335 °C was constructed on the basis of the obtained experimental results. The morphologies of the diffusion couples in the Ca–Mg–Zn phase diagram at 335 °C were studied. Depending on the terminal compositions of the diffusion couples, the two-phase regions in the diffusion zone have either a tooth-like morphology or contain a matrix phase with isolated and/or dendritic precipitates.  相似文献   

19.
Hydrogenation of cyclohexanecarboxamide to aminomethylcyclohexane was conducted with silica-supported bimetallic catalysts composed of noble metal and group 6–7 elements. The combination of rhodium and molybdenum with molar ratio of 1:1 showed the highest activity. The effect of addition of various metal oxides was investigated on the catalysis of Rh–MoOx/SiO2, and the addition of CeO2 much increased the activity and selectivity. Higher hydrogen pressure and higher reaction temperature in the tested range of 2–8 MPa and 393–433 K, respectively, were favorable in view of both activity and selectivity. The highest yield of aminomethylcyclohexane obtained over Rh–MoOx/SiO2 + CeO2 was 63%. The effect of CeO2 addition was highest when CeO2 was not calcined, and CeO2 calcined at >773 K showed a smaller effect. The use of CeO2 as a support rather decreased the activity in comparison with Rh–MoOx/SiO2. The weakly-basic nature of CeO2 additive can affect the surface structure of Rh–MoOx/SiO2, i.e. reducing the ratio of Mo–OH/Mo–O sites.  相似文献   

20.
We study the collective dynamics of groups of whirligig beetles Dineutus discolor (Coleoptera: Gyrinidae) swimming freely on the surface of water. We extract individual trajectories for each beetle, including positions and orientations, and use this to discover (i) a density-dependent speed scaling like vρν with ν ≈ 0.4 over two orders of magnitude in density (ii) an inertial delay for velocity alignment of approximately 13 ms and (iii) coexisting high and low-density phases, consistent with motility-induced phase separation (MIPS). We modify a standard active Brownian particle (ABP) model to a corralled ABP (CABP) model that functions in open space by incorporating a density-dependent reorientation of the beetles, towards the cluster. We use our new model to test our hypothesis that an motility-induced phase separation (MIPS) (or a MIPS like effect) can explain the co-occurrence of high- and low-density phases we see in our data. The fitted model then successfully recovers a MIPS-like condensed phase for N = 200 and the absence of such a phase for smaller group sizes N = 50, 100.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号