首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Trk family of receptors play a wide variety of roles in physiological and disease processes in both neuronal and non-neuronal tissues. Amongst these the TrkB receptor in particular has attracted major attention due to its critical role in signalling for brain derived neurotrophic factor (BDNF), neurotrophin-3 (NT3) and neurotrophin-4 (NT4). TrkB signalling is indispensable for the survival, development and synaptic plasticity of several subtypes of neurons in the nervous system. Substantial evidence has emerged over the last decade about the involvement of aberrant TrkB signalling and its compromise in various neuropsychiatric and degenerative conditions. Unusual changes in TrkB signalling pathway have also been observed and implicated in a range of cancers. Variations in TrkB pathway have been observed in obesity and hyperphagia related disorders as well. Both BDNF and TrkB have been shown to play critical roles in the survival of retinal ganglion cells in the retina. The ability to specifically modulate TrkB signalling can be critical in various pathological scenarios associated with this pathway. In this review, we discuss the mechanisms underlying TrkB signalling, disease implications and explore plausible ameliorative or preventive approaches.  相似文献   

2.
3.
G protein-coupled receptors (GPCRs) are seven transmembrane-spanning proteins belonging to a large family of cell-surface receptors involved in many intracellular signaling cascades. Despite GPCRs lack intrinsic tyrosine kinase activity, tyrosine phosphorylation of a tyrosine kinase receptor (RTK) occurs in response to binding of specific agonists of several such receptors, triggering intracellular mitogenic cascades. This suggests that the notion that GPCRs are associated with the regulation of post-mitotic cell functions is no longer believable. Crosstalk between GPCR and RTK may occur by different molecular mechanism such as the activation of metalloproteases, which can induce the metalloprotease-dependent release of RTK ligands, or in a ligand-independent manner involving membrane associated non-receptor tyrosine kinases, such as c-Src. Reactive oxygen species (ROS) are also implicated as signaling intermediates in RTKs transactivation. Intracellular concentration of ROS increases transiently in cells stimulated with GPCR agonists and their deliberated and regulated generation is mainly catalyzed by enzymes that belong to nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family. Oxidation and/or reduction of cysteine sulfhydryl groups of phosphatases tightly controls the activity of RTKs and ROS-mediated inhibition of cellular phosphatases results in an equilibrium shift from the non-phosphorylated to the phosphorylated state of RTKs. Many GPCR agonists activate phospholipase C, which catalyze the hydrolysis of phosphatidylinositol 4,5-bis-phosphate to produce inositol 1,4,5-triphosphate and diacylglicerol. The consequent mobilization of Ca2+ from endoplasmic reticulum leads to the activation of protein kinase C (PKC) isoforms. PKCα mediates feedback inhibition of RTK transactivation during GPCR stimulation. Recent data have expanded the coverage of transactivation to include Serine/Threonine kinase receptors and Toll-like receptors. Herein, we discuss the main mechanisms of GPCR-mediated cell-surface receptors transactivation and the pathways involved in intracellular responses induced by GPCR agonists. These studies may suggest the design of novel strategies for therapeutic interventions.  相似文献   

4.
Nicotine is the predominant addictive compound of tobacco and causes the acquisition of dependence through its interactions with nicotinic acetylcholine receptors and various neurotransmitter releases in the central nervous system. The Ca2+/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-regulated kinase (ERK) play a pivotal role in synaptic plasticity in the hippocampus. CaMKII is involved in long-term potentiation induction, which underlies the consolidation of learning and memory; however, the roles of CaMKII in nicotine and other psychostimulant-induced addiction still require further investigation. This article reviews the molecular mechanisms and crucial roles of CaMKII and ERK in nicotine and other stimulant drug-induced addiction. We also discuss dopamine (DA) receptor signaling involved in nicotine-induced addiction in the brain reward circuitry. In the last section, we introduce the association of polyunsaturated fatty acids and cellular chaperones of fatty acid-binding protein 3 in the context of nicotine-induced addiction in the mouse nucleus accumbens and provide a novel target for the treatment of drug abuse affecting dopaminergic systems.  相似文献   

5.
Endometrial mesenchymal stromal cells (E-MSCs) extensively contribute to the establishment and progression of endometrial ectopic lesions through formation of the stromal vascular tissue, and support to its growth and vascularization. As E-MSCs lack oestrogen receptors, endometriosis eradication cannot be achieved by hormone-based pharmacological approaches. Quinagolide is a non-ergot-derived dopamine receptor 2 agonist reported to display therapeutic effects in in vivo models of endometriosis. In the present study, we isolated E-MSCs from eutopic endometrial tissue and from ovarian and peritoneal endometriotic lesions, and we tested the effect of quinagolide on their proliferation and matrix invasion ability. Moreover, the effect of quinagolide on E-MSC endothelial differentiation was assessed in an endothelial co-culture model of angiogenesis. E-MSC lines expressed dopamine receptor 2, with higher expression in ectopic than eutopic ones. Quinagolide inhibited the invasive properties of E-MSCs, but not their proliferation, and limited their endothelial differentiation. The abrogation of the observed effects by spiperone, a dopamine receptor antagonist, confirmed specific dopamine receptor activation. At variance, no involvement of VEGFR2 inhibition was observed. Moreover, dopamine receptor 2 activation led to downregulation of AKT and its phosphorylation. Of interest, several effects were more prominent on ectopic E-MSCs with respect to eutopic lines. Together with the reported effects on endometrial and endothelial cells, the observed inhibition of E-MSCs may increase the rationale for quinagolide in endometriosis treatment.  相似文献   

6.
Substantial evidence over the last decades has implicated uncontrolled angiogenesis with various pathological states, including cancer. Vascular endothelial growth factor (VEGF) plays a critical role in its regulation. Because the tyrosine kinase VEGF receptor‐2 (VEGFR‐2) is the major mediator of the mitogenic, angiogenic, and permeability‐enhancing effects of VEGF, it has become one of the most profound anti‐angiogenesis targets. Inspired by the anthranilamide class of VEGFR‐2 inhibitors, we performed a computational analysis of some potent representative members, using docking and molecular dynamics calculations. Based on the observations drawn from introducing the effect of the receptor's flexibility in implicit aqueous environment, we designed, synthesized, and characterized several new analogues of related scaffolds with modifications in their steric and electronic characteristics. In vitro evaluation of these compounds revealed several novel VEGFR‐2 inhibitors that are less cytotoxic and more potent than the parent compounds.  相似文献   

7.
The Eph receptor tyrosine kinase member EphB6 is a pseudokinase, and similar to other pseudoenzymes has not attracted an equivalent amount of interest as its enzymatically-active counterparts. However, a greater appreciation for the role pseudoenzymes perform in expanding the repertoire of signals generated by signal transduction systems has fostered more interest in the field. EphB6 acts as a molecular switch that is capable of modulating the signal transduction output of Eph receptor clusters. Although the biological effects of EphB6 activity are well defined, the molecular mechanisms of EphB6 function remain enigmatic. In this review, we use a comparative approach to postulate how EphB6 acts as a scaffold to recruit adaptor proteins to an Eph receptor cluster and how this function is regulated. We suggest that the evolutionary repurposing of EphB6 into a kinase-independent molecular switch in mammals has involved repurposing the kinase activation loop into an SH3 domain-binding site. In addition, we suggest that EphB6 employs the same SAM domain linker and juxtamembrane domain allosteric regulatory mechanisms that are used in kinase-positive Eph receptors to regulate its scaffold function. As a result, although kinase-dead, EphB6 remains a strategically active component of Eph receptor signaling.  相似文献   

8.
The endocytosis of ligand-bound receptors and their eventual recycling to the plasma membrane (PM) are processes that have an influence on signalling activity and therefore on many cell functions, including migration and proliferation. Like other tyrosine kinase receptors (TKR), the insulin receptor (INSR) has been shown to be endocytosed by clathrin-dependent and -independent mechanisms. Once at the early endosome (EE), the sorting of the receptor, either to the late endosome (LE) for degradation or back to the PM through slow or fast recycling pathways, will determine the intensity and duration of insulin effects. Both the endocytic and the endosomic pathways are regulated by many proteins, the Arf and Rab families of small GTPases being some of the most relevant. Here, we argue for a specific role for the slow recycling route, whilst we review the main molecular mechanisms involved in INSR endocytosis, sorting and recycling, as well as their possible role in cell functions.  相似文献   

9.
Despite the known importance of the transmembrane domain (TMD) of syndecan receptors in cell adhesion and signaling, the molecular basis for syndecan TMD function remains unknown. Using in vivo invertebrate models, we found that mammalian syndecan-2 rescued both the guidance defects in C. elegans hermaphrodite-specific neurons and the impaired development of the midline axons of Drosophila caused by the loss of endogenous syndecan. These compensatory effects, however, were reduced significantly when syndecan-2 dimerization-defective TMD mutants were introduced. To further investigate the role of the TMD, we generated a chimera, 2eTPC, comprising the TMD of syndecan-2 linked to the cytoplasmic domain of platelet-derived growth factor receptor (PDGFR). This chimera exhibited SDS-resistant dimer formation that was lost in the corresponding dimerization-defective syndecan-2 TMD mutant, 2eT(GL)PC. Moreover, 2eTPC specifically enhanced Tyr 579 and Tyr 857 phosphorylation in the PDGFR cytoplasmic domain, while the TMD mutant failed to support such phosphorylation. Finally, 2eTPC, but not 2eT(GL)PC, induced phosphorylation of Src and PI3 kinase (known downstream effectors of Tyr 579 phosphorylation) and promoted Src-mediated migration of NIH3T3 cells. Taken together, these data suggest that the TMD of a syndecan-2 specifically regulates receptor cytoplasmic domain function and subsequent downstream signaling events controlling cell behavior.  相似文献   

10.
The cytoskeletal protein vimentin is secreted under various physiological conditions. Extracellular vimentin exists primarily in two forms: attached to the outer cell surface and secreted into the extracellular space. While surface vimentin is involved in processes such as viral infections and cancer progression, secreted vimentin modulates inflammation through reduction of neutrophil infiltration, promotes bacterial elimination in activated macrophages, and supports axonal growth in astrocytes through activation of the IGF-1 receptor. This receptor is overexpressed in cancer cells, and its activation pathway has significant roles in general cellular functions. In this study, we investigated the functional role of extracellular vimentin in non-tumorigenic (MCF-10a) and cancer (MCF-7) cells through the evaluation of its effects on cell migration, proliferation, adhesion, and monolayer permeability. Upon treatment with extracellular recombinant vimentin, MCF-7 cells showed increased migration, proliferation, and adhesion, compared to MCF-10a cells. Further, MCF-7 monolayers showed reduced permeability, compared to MCF-10a monolayers. It has been shown that the receptor binding domain of SARS-CoV-2 spike protein can alter blood–brain barrier integrity. Surface vimentin also acts as a co-receptor between the SARS-CoV-2 spike protein and the cell-surface angiotensin-converting enzyme 2 receptor. Therefore, we also investigated the permeability of MCF-10a and MCF-7 monolayers upon treatment with extracellular recombinant vimentin, and its modulation of the SARS-CoV-2 receptor binding domain. These findings show that binding of extracellular recombinant vimentin to the cell surface enhances the permeability of both MCF-10a and MCF-7 monolayers. However, with SARS-CoV-2 receptor binding domain addition, this effect is lost with MCF-7 monolayers, as the extracellular vimentin binds directly to the viral domain. This defines an influence of extracellular vimentin in SARS-CoV-2 infections.  相似文献   

11.
Nitric oxide (NO) is released by endothelial cells in the blood vessel wall to enhance vasodilation. Marine polyphenols are known to have protective effects against vascular dysfunction and hypertension. The present study is the first to investigate how diphlorethohydroxycarmalol (DPHC) isolated from Ishige okamurae affects calcium levels, resulting in enhanced vasodilation. We examined calcium modulation with the well-known receptors, acetylcholine receptor (AchR) and vascular endothelial growth factor 2 (VEGFR2), which are related to NO formation, and further confirmed the vasodilatory effect of DPHC. We confirmed that DPHC stimulated NO production by increasing calcium levels and endothelial nitric oxide synthase (eNOS) expression. DPHC affected AchR and VEGFR2 expression, thereby influencing transient calcium intake. Specific antagonists, atropine and SU5416, were used to verify our findings. Furthermore, based on the results of in vivo experiments, we treated Tg(flk:EGFP) transgenic zebrafish with DPHC to confirm its vasodilatory effect. In conclusion, the present study showed that DPHC modulated calcium transit through AchR and VEGFR2, increasing endothelial-dependent NO production. Thus, DPHC, a natural marine component, can efficiently ameliorate cardiovascular diseases by improving vascular function.  相似文献   

12.
Late-life depression (LLD), compared to depression at a young age, is more likely to have poor prognosis and high risk of progression to dementia. A recent systemic review and meta-analysis of the present antidepressants for LLD showed that the treatment response rate was 48% and the remission rate was only 33.7%, thus implying the need to improve the treatment with other approaches in the future. Recently, agents modulating the glutamatergic system have been tested for mental disorders such as schizophrenia, dementia, and depressive disorder. Ketamine, a noncompetitive NMDA receptor (NMDAR) antagonist, requires more evidence from randomized clinical trials (RCTs) to prove its efficacy and safety in treating LLD. The metabotropic receptors (mGluRs) of the glutamatergic system are family G-protein-coupled receptors, and inhibition of the Group II mGluRs subtypes (mGlu2 and mGlu3) was found to be as effective as ketamine in exerting rapid antidepressant activity in some animal studies. Inflammation has been thought to contribute to depression for a long time. The cytokine levels not only increase with age but also decrease serotonin. Regarding LLD, interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) released in vivo are likely to contribute to the reduced serotonin level. Brain-derived neurotrophic factor (BDNF), a growth factor and a modulator in the tropomyosin receptor kinase (Trk) family of tyrosine kinase receptors, probably declines quantitatively with age. Recent studies suggest that BDNF/TrkB decrement may contribute to learning deficits and memory impairment. In the process of aging, physiological changes in combination with geriatric diseases such as vascular diseases result in poorer prognosis of LLD in comparison with that of young-age depression. Treatments with present antidepressants have been generally unsatisfactory. Novel treatments such as anti-inflammatory agents or NMDAR agonists/antagonists require more studies in LLD. Last but not least, LLD and dementia, which share common pathways and interrelate reciprocally, are a great concern. If it is possible to enhance the treatment of LDD, dementia can be prevented or delated.  相似文献   

13.
Transient receptor potential vanilloid 1 (TRPV1) has been implicated in peripheral inflammation and is a mediator of the inflammatory response to various noxious stimuli. However, the interaction between TRPV1 and N-methyl-D-aspartate (NMDA) receptors in the regulation of inflammatory pain remains poorly understood. This study aimed to investigate the analgesic effects of intrathecal administration of capsazepine, a TRPV1 antagonist, on carrageenan-induced inflammatory pain in mice and to identify its interactions with NMDA receptors. Inflammatory pain was induced by intraplantar injection of 2% carrageenan in male ICR mice. To investigate the analgesic effects of capsazepine, pain-related behaviors were evaluated using von Frey filaments and a thermal stimulator placed on the hind paw. TRPV1 expression and NMDA receptor phosphorylation in the spinal cord and glutamate concentration in the spinal cord and serum were measured. Intrathecal treatment with capsazepine significantly attenuated carrageenan-induced mechanical allodynia and thermal hyperalgesia. Moreover, carrageenan-enhanced glutamate and phosphorylation of NMDA receptor subunit 2B in the spinal cord were suppressed by capsazepine administration. These results indicate that TRPV1 and NMDA receptors in the spinal cord are associated with inflammatory pain transmission, and inhibition of TRPV1 may reduce inflammatory pain via NMDA receptors.  相似文献   

14.
This article reviews the dynamic interactions of the tumour microenvironment, highlighting the roles of acetyl-CoA and melatonergic pathway regulation in determining the interactions between oxidative phosphorylation (OXPHOS) and glycolysis across the array of cells forming the tumour microenvironment. Many of the factors associated with tumour progression and immune resistance, such as yin yang (YY)1 and glycogen synthase kinase (GSK)3β, regulate acetyl-CoA and the melatonergic pathway, thereby having significant impacts on the dynamic interactions of the different types of cells present in the tumour microenvironment. The association of the aryl hydrocarbon receptor (AhR) with immune suppression in the tumour microenvironment may be mediated by the AhR-induced cytochrome P450 (CYP)1b1-driven ‘backward’ conversion of melatonin to its immediate precursor N-acetylserotonin (NAS). NAS within tumours and released from tumour microenvironment cells activates the brain-derived neurotrophic factor (BDNF) receptor, TrkB, thereby increasing the survival and proliferation of cancer stem-like cells. Acetyl-CoA is a crucial co-substrate for initiation of the melatonergic pathway, as well as co-ordinating the interactions of OXPHOS and glycolysis in all cells of the tumour microenvironment. This provides a model of the tumour microenvironment that emphasises the roles of acetyl-CoA and the melatonergic pathway in shaping the dynamic intercellular metabolic interactions of the various cells within the tumour microenvironment. The potentiation of YY1 and GSK3β by O-GlcNAcylation will drive changes in metabolism in tumours and tumour microenvironment cells in association with their regulation of the melatonergic pathway. The emphasis on metabolic interactions across cell types in the tumour microenvironment provides novel future research and treatment directions.  相似文献   

15.
The Src gene product (Src) and the epidermal growth factor receptor (EGFR) are prototypes of oncogene products and function primarily as a cytoplasmic non-receptor tyrosine kinase and a transmembrane receptor tyrosine kinase, respectively. The identification of Src and EGFR, and the subsequent extensive investigations of these proteins have long provided cutting edge research in cancer and other molecular and cellular biological studies. In 1995, we reported that the human epidermoid carcinoma cells, A431, contain a small fraction of Src and EGFR in which these two kinase were in physical association with each other, and that Src phosphorylates EGFR on tyrosine 845 (Y845) in the Src-EGFR complex. Y845 of EGFR is located in the activation segment of the kinase domain, where many protein kinases contain kinase-activating autophosphorylation sites (e.g., cAMP-dependent protein kinase, Src family kinases, transmembrane receptor type tyrosine kinases) or trans-phosphorylation sites (e.g., cyclin-dependent protein kinase, mitogen-activated protein kinase, Akt protein kinase). A number of studies have demonstrated that Y845 phosphorylation serves an important role in cancer as well as normal cells. Here we compile the experimental facts involving Src phosphorylation of EGFR on Y845, by which cell proliferation, cell cycle control, mitochondrial regulation of cell metabolism, gamete activation and other cellular functions are regulated. We also discuss the physiological relevance, as well as structural insights of the Y845 phosphorylation.  相似文献   

16.
17.
目的探讨分别阻断和联合阻断血管内皮生长因子受体3(Vascular endothelial growth factor receptor 3,VEGFR3)及神经纤毛蛋白2(Neuropilin 2,NRP2)基因的表达对人胃癌SGC-7901细胞株增殖和凋亡的影响。方法将SGC-7901细胞株分为3大组,VEGFR3阻断组、NRP2阻断组和VEGFR3+NRP2阻断组,各大组中又包含空白对照组、脂质体转染组、无义链转染组(NSODN组)和不同浓度反义链转染组(ASODN组)。转染后的各组SGC-7901细胞株经RT-PCR法检测VEGFR3-mRNA及NRP2-mRNA的转录水平。分别采用MTT法和流式细胞术检测细胞的增殖和凋亡情况。结果反义链转染组VEGFR3-mRNA和NRP2-mRNA的转录水平明显低于其各自的空白对照组、脂质体转染组和NSOND组,表明该组成功阻断基因VEGFR3和NRP2的表达。各组细胞的增殖和凋亡情况差异有统计学意义(P<0.05),并呈剂量和时间依赖性。在相同条件下,单独转染VEGFR3-ASODN组对胃癌细胞增殖的抑制及促凋亡作用优于单独转染NRP2-ASODN组,而联合转染组对细胞增殖的抑制及促凋亡作用最明显。结论阻断VEGFR3基因的表达对细胞增殖凋亡的影响大于阻断NRP2基因,联合阻断两个基因的表达,对细胞增殖和凋亡的影响明显大于单独阻断组。  相似文献   

18.
Renal cell carcinoma (RCC) is the most frequent renal tumor and its incidence is increasing worldwide. Tumor angiogenesis is known to play a crucial role in the etiopathogenesis of RCC and over the last few years an even deeper knowledge of its contribution in metastatic RCC development has led to the development of numerous molecular targeting agents (such as sunitinib, sorafenib, pazopanib, axitinib, tivozanib, and dovitinib). The above agents are principally directed against vascular endothelial growth factor receptor (VEGFR) members and also against c-Kit receptor (c-KitR). The role of c-kitR inhibition on clear cell RCC (ccRCC), the main RCC subtype, is less well established. Whether c-kitR activation through its ligand, stem cell factor (SCF) contributes significantly to the effects of tyrosine kinase inhibitors (TKIs) treatment remains to be established. It is important to underscore that the c-KitR is expressed on mast cells (MCs) and cancer cells. After an examination of the c-KitR/SCF pathway, we review here the principal studies that have evaluated c-Kit expression in RCC. Moreover, we summarize some investigations that have observed the distribution of MCs in primary renal cancer and in adjacent normal tissue with appropriate histological immunohistochemical techniques. We also focus on few studies that have evaluated the correlation between RCC proliferation, MC count and microvessel density (MVD), as hallmarks of tumor angiogenesis. Thus, the aim of this review of the literature is to clarify if c-KitR expression, MC count and MVD could have prognostic significance and the possible predictive therapeutic implications in RCC.  相似文献   

19.
The anorexigenic neuropeptide prolactin-releasing peptide (PrRP) is involved in the regulation of food intake and energy expenditure. Lipidization of PrRP stabilizes the peptide, facilitates central effect after peripheral administration and increases its affinity for its receptor, GPR10, and for the neuropeptide FF (NPFF) receptor NPFF-R2. The two most potent palmitoylated analogs with anorectic effects in mice, palm11-PrRP31 and palm-PrRP31, were studied in vitro to determine their agonist/antagonist properties and mechanism of action on GPR10, NPFF-R2 and other potential off-target receptors related to energy homeostasis. Palmitoylation of both PrRP31 analogs increased the binding properties of PrRP31 to anorexigenic receptors GPR10 and NPFF-R2 and resulted in a high affinity for another NPFF receptor, NPFF-R1. Moreover, in CHO-K1 cells expressing GPR10, NPFF-R2 or NPFF-R1, palm11-PrRP and palm-PrRP significantly increased the phosphorylation of extracellular signal-regulated kinase (ERK), protein kinase B (Akt) and cAMP-responsive element-binding protein (CREB). Palm11-PrRP31, unlike palm-PrRP31, did not activate either c-Jun N-terminal kinase (JNK), p38, c-Jun, c-Fos or CREB pathways in cells expressing NPFF-1R. Palm-PrRP31 also has higher binding affinities for off-target receptors, namely, the ghrelin, opioid (KOR, MOR, DOR and OPR-L1) and neuropeptide Y (Y1, Y2 and Y5) receptors. Palm11-PrRP31 exhibited fewer off-target activities; therefore, it has a higher potential to be used as an anti-obesity drug with anorectic effects.  相似文献   

20.
The immune system homeostasis relies on a tight equilibrium of interconnected stimulatory and inhibitory signals. Disruption of this balance is characteristic of autoimmune diseases such as systemic lupus erythematosus (SLE). Aside from activating the classical complement pathway and enhancing pathogens and apoptotic cells phagocytosis, C1q has been recently shown to play an important role in immune modulation and tolerance by interacting with several inhibitory and stimulatory immune receptors. Due to its functional organization into collagen-like (CLR) and globular (GR) regions and its multimeric nature, C1q is able to interact simultaneously with several of these receptors and locally congregate pro- and anti-inflammatory signals, thus modulating the immune response. Leukocyte associated immunoglobulin-like (Ig-like) receptor 1 (LAIR-1), a ubiquitous collagen receptor expressed in many immune cell types, has been reported to interact with the CLR of C1q. In this study, we provide new insights into the molecular and structural determinants underlying C1q/LAIR-1 interaction. Recombinant LAIR-1 extracellular Ig-like domain was produced and tested for its interaction with C1q. A molecular dissection of C1q combined with competition assays reveals that LAIR-1 interacts with C1q’s CLR through a binding site close but different from the one of its associated C1r2s2 proteases tetramer. On the other side, we identified LAIR-1 residues involved in C1q interaction by site-directed mutational analysis. All together, these results lead to propose a possible model for C1q interaction with LAIR-1 and will contribute to the fundamental understanding of C1q-mediated immune tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号