首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cementitious performance of a coarse granulated blast furnace slag, 2900 cm2/g, was investigated in concretes of 230, 280 and 330 kg binder/m3. First, the slag partially replaced 30%, 50% and 70% of Portland cement, the strength reduced as the amount of slag increased; however, for high binder contents, similar strengths were attained for lower Portland cement contents. Second, the slag was alkali activated with sodium silicate (moduli 1.7 and 2) at 4%, 6% and 8% %Na2O, the strength increased with the amount of slag in the concrete and developed faster as %Na2O increased. The microstructures of both type of concretes were dense; however, the strengths of activated slag were superior at similar binder loads, indicating that the hydration products of activated slag are of higher intrinsic strength.  相似文献   

2.
Cold-bonded fly ash aggregate concrete with fly ash as part of binder or fine aggregate facilitates high volume utilization of fly ash in concrete with minimum energy consumption. This paper investigates the influence of fly ash on strength and sorption behaviour of cold-bonded fly ash aggregate concrete due to partial replacement of cement and also as replacement material for sand. While cement replacement must be restricted based on the compressive strength requirement at desired age, replacement of sand with fly ash appears to be advantageous from early days onwards with higher enhancement in strength and higher utilization of fly ash in mixes of lower cement content. Microstructure of concrete was examined under BSEI mode. Replacement of sand with fly ash is effective in reducing water absorption and sorptivity attributable to the densification of both matrix and matrix–aggregate interfacial bond. Cold-bonded fly ash aggregate concrete with a cement content of 250 kg/m3, results in compressive strength of about 45 MPa, with a total inclusion of around 0.6 m3 of fly ash in unit volume of concrete.  相似文献   

3.
In Malaysia, oil palm shell (OPS) is an agricultural solid waste originating from the palm oil industry. In this investigation old OPS was used for production of high strength lightweight concrete (HSLC). The density, air content, workability, cube compressive strength and water absorption were measured. The effect of five types of curing conditions on 28-day compressive strength was studied. The test results showed that by incorporating limestone powder and without it, it is possible to produce the OPS concretes with 28-day compressive strength of about 43–48 MPa and dry density of about 1870–1990 kg/m3. The compressive strength of OPS HSLC is sensitive to the lack of curing. The water absorption of these concretes is in the range of good concretes.  相似文献   

4.
Efforts have been made to make high strength alpha plaster from phosphogypsum, a by-product of phosphoric acid industry. Phosphogypsum was autoclaved in slurry form (phosphogypsum 50% + water 50%, by wt.) in the laboratory at different steam pressures for different durations in presence of chemical admixtures. It was found that with small quantity of chemical admixture (sodium succinate/potassium citrate/sodium sulphate), alpha plaster of high strength can be produced. The optimum pressure and duration of autoclaving was found to be as 35 psi and 2.0 h, respectively. The alpha plaster was examined for making cementitious binders by admixing hydrated lime, fly ash, granulated blast furnace slag, marble dust and chemical additives with alpha plaster. Data showed that cementitious binder of compressive strength of 22.0 and 30 MPa (at 28 days of curing at 40° and 50 °C) and low water absorption was produced. DTA and SEM studies of the binder showed formation of CSH, ettringite and C4AH13 as main cementitious products to give strength.  相似文献   

5.
In this research, a heavily contaminated humus-rich peat soil and a lightly contaminated humus-poor sand soil, extracted from a field location in the Netherlands, are immobilized. These two types of soil are very common in the Netherlands. The purpose is to develop financial feasible, good quality immobilisates, which can be produced on large scale.To this end, two binder combinations were examined, namely slag cement with quicklime and slag cement with hemi-hydrate. The mixes with hemi-hydrate proved to be better for the immobilization of humus rich soils, having a good early strength development. The heavily contaminated soil with 19% humus (of dm) could not be immobilized using 398 kg slag cement and 33 kg quicklime per m3 concrete mix (binder = 38.4% dm soil). It is possible to immobilize this soil using 480 kg binder (432 kg slag cement, 48 kg quicklime) per m3 of mix (58.2% dm). An alternative to the addition of extra binder (slag cement with quicklime) is mixing the soil with sand containing particles in the range of 0–2 mm. This not only improved the compressive strength of the immobilisates, but also reduced the capillary absorption. All the mixes with the lightly contaminated soil were cost-effective and suitable for production of immobilisates on a large scale. These mixes had good workability, a good compressive strength and a low capillary absorption. The leaching of all mixes was found to be much lower than allowed by the regulations. Given these results, the final mixes in the main experiment fulfilled all the financial and technical objectives.  相似文献   

6.
Self-compacting concretes (SCCs) have brought a promising insight into the concrete industry to provide environmental impact and cost reduction. However, the use of ternary and especially quaternary cementitious blends of mineral admixtures have not found sufficient applications in the production of SCCs. For this purpose, an experimental study was conducted to investigate properties of SCCs with mineral admixtures. Moreover, durability based multi-objective optimization of the mixtures were performed to achieve an optimal concrete mixture proportioning. A total of 22 concrete mixtures were designed having a constant water/binder ratio of 0.44 and a total binder content of 450 kg/m3. The control mixture included only a Portland cement (PC) as the binder while the remaining mixtures incorporated binary, ternary, and quaternary cementitious blends of PC, fly ash (FA), ground granulated blast furnace slag (S), and silica fume (SF). Fresh properties of the SCCs were tested for slump flow diameter, slump flow time, L-box height ratio, and V-funnel flow time. Furthermore, the hardened properties of the concretes were tested for sorptivity, water permeability, chloride permeability, electrical resistivity, drying shrinkage, compressive strength, and ultrasonic pulse velocity. The results indicated that when the durability properties of the concretes were taken into account, the ternary use of S and SF provided the best performance.  相似文献   

7.
Basic oxygen furnace steel slag is the most common steel slag in China. In this study, the hydration properties of this kind of steel slag were investigated. Steel slag was ground separately to 458 m2/kg as well as 506 m2/kg. Different hydration conditions were set by changing the temperature or pH value. Hydration exothermic rate was measured within 4 days. Non-evaporable water content, hydration products and hardened paste morphologies were investigated at 1, 3, 7, 28 and 90 days. The results showed that the hydration process of steel slag was similar with that of cement. However, its hydration rate was much lower than cement. The hydration rate of steel slag at the early age could be accelerated by raising the fineness of particles, curing temperature or alkalinity of solution. However, raising the pH value of solution had little efficiency for the later hydration of steel slag and raising curing temperature even had negative influence on its later hydration. CSH gel and Ca(OH)2 were the main hydration products of steel slag. A part of C3S and C2S crystal in steel slag had very low activity and unhydrated after 90 days. RO phase was almost inert. The interface between the particles of RO phase and CSH gel was a weak region in the system.  相似文献   

8.
This paper presents the test results on cracking behavior at medium age of uniaxially restrained specimens containing different types of mineral admixture, namely fly ash and limestone powder. In this study, the uniaxially restrained shrinkage, free shrinkage and strength tests were conducted to study the potential of cracking of concrete under restrained shrinkage condition. The influences of water to binder ratio, mineral admixtures and curing period of concrete on cracking behavior were investigated in this study. The investigation showed that cracking age and cracking strain of restrained specimens vary with mix proportion, mineral admixture and curing period. The potential of shrinkage cracking is not influenced only by cracking strain and amount of shrinkage but also on shrinkage rate and tensile creep. Mixture with lower water to binder ratio (w/b = 0.35) shows shorter cracking age than the mixture with higher water to binder ratio (w/b = 0.55). Fly ash and limestone powder significantly increase cracking age of concrete. The cracking age increases with the increase of the replacement ratio of fly ash. The higher shrinkage rate, when exposed to drying, of mixture with longer curing period leads to shorter cracking age.  相似文献   

9.
Four limestone-based, alkali-activated slag fine aggregate concretes, two of which contained amorphous silica in the form of diatomaceous earth, were fabricated using different activating solutions (NaOH/waterglass or Na2CO3). Emphasis in this work was placed on using simple manufacturing methods and widely available materials, to ensure that these formulae are practical as construction materials in the developing world. Although cured only at room temperature, these fine aggregate concretes have good compressive strengths (~45 MPa) and their tensile strengths increased from ~2.6 MPa after 1 day of curing to ~4 MPa after 28 day for the NaOH-activated formulae. Samples activated with Na2CO3 had negligible tensile strengths after 1 day, increasing to ~2.5 MPa after 28 day. The main cementing phase was shown to be calcium–silicate–hydrates in all formulae; those activated with Na2CO3 also showed the presence of hydrotalcite. No evidence of geopolymeric phases was found, though incorporation of Na to form N–S–H that balance charges arising from Al substitution of Si in C–S–H is likely. Despite the short (~120 s) pot life of the strongest formula, NaCl was shown to be an effective retarding agent, which reduced the strengths of different formulae, at worst, by less than 25% after 28 day of curing.  相似文献   

10.
In this study, the effect of high temperature on compressive and splitting tensile strength of lightweight concrete containing fly ash was investigated experimentally and statistically. The mixes incorporating 0%, 10%, 20% and 30% fly ash were prepared. After being heated to temperatures of 200, 400 and 800 °C, respectively, the compressive and splitting tensile strength of lightweight concrete was tested. This article adopts Taguchi approach with an L16 (45) to reduce the numbers of experiment. Two control factors (percentage of fly ash and heating degree) for this study were used. The level of importance of these parameters on compressive and splitting tensile strength was determined by using analysis of variance (ANOVA) method.  相似文献   

11.
About 10 million tonnes of fly ash are produced yearly as waste from coal fired thermal power plants in Turkey. Only a small portion of this waste is utilized as a raw material in the production of cement and concrete. In this study, Seyitömer power plant fly ash was investigated in the production of light weight bricks. Fly ash, sand and hydrated lime mixtures were steam autoclaved under different test conditions to produce brick samples. An optimum raw material composition was found to be a mixture of 68% fly ash, 20% sand and 12% hydrated lime. The optimum brick forming pressure was 20 MPa. The optimum autoclaving time and autoclaving pressure were found 6 h and 1.5 MPa, respectively. The compressive strength, unit volume weight, water absorption and thermal conductivity of the fly ash–sand–lime bricks obtained under optimum test conditions are 10.25 MPa, 1.14 g/cm3, 40.5% and 0.34 W  m−1 K−1 respectively. The results of this study suggested that it was possible to produce good quality light weight bricks from the fly ash of Seyitömer power plant.  相似文献   

12.
Fly ashes are obtained from thermal power plants and they are pozzolanic materials, which can act as partial replacement material for both portland cement and fine aggregate. With their economical advantages and potential for improving fresh and hardened concrete performance, they have some benefits for using in concrete industry. In this study, the objective was to find the efficiency factors of Turkish C and F-type fly ashes and to compare their properties. Three different cement dosages were used (260, 320, 400 kg/m3), two different ratios (10% and 17%) of cement reduced from the control concretes and three different ratios (depending on cement reduction ratio) of fly ash were added into the mixtures. At the ages of 28 and 90 days, compressive strength, modulus of elasticity and ultrasound velocity tests were carried out. From the compressive strength results, the k efficiency factors of C and F-type fly ashes were obtained. As a result, it is seen that efficiency factors of the concrete produced by the replacement of F and C type fly ashes with cement increase with the increase in cement dosage and concrete age.  相似文献   

13.
This paper focuses on the properties of sintered aggregates with low calcium bottom ash from coal fired thermal power plants using a wide range of clay binders through pelletization process. The experimental runs were designed using central composite design of response surface methodology. The aggregate was produced using a disc pelletizer. The pelletized aggregate was sintered at 800–1100 °C for 30–120 min. Sintered aggregates were tested for bulk density, 10% fines value and water absorption. The factors involved in the process are moisture content, binder, Ca(OH)2 dosage, sintering temperature and duration. It was observed that an increase in binder dosage and sintering temperature resulted in aggregates with higher 10% fines value and low water absorption. The properties of aggregates depended on the type of binder used. Aggregate with kaolinite and metakaolin binders resulted in high 10% fines value. The results indicate the potential for manufacturing high quality lightweight aggregate from bottom ash using clay binders.  相似文献   

14.
In this study, we optimized a blend of high-strength, roller-compacted, latex-modified rapid-set concrete (RCLMC) that can be re-opened to traffic after 4 h. To this end, we tested several variables in laboratory experiments, including hardening acceleration agents, cement type, latex addition, and CSA admixture ratios. The target compressive strength was 21 MPa after 4 h. A mixture of Type III cement to CSA admixture at 235:165 kg/m3 (400 kg/m3 total binder) and 23.5 kg/m3 latex (10% of the cement weight) achieved the target compressive strength and was the most economically efficient.  相似文献   

15.
Blastfurnace slag has been widely used as a successful replacement material for Portland cement, and concrete of enhanced qualities can be achieved as a result. Due to the slag’s slow reactivity, however, the early-age mechanical properties may suffer. This paper reports the results of an investigation, carried out at Chlef University (Algeria), using Algerian slag, known to exhibit low reactivity due to its low CaO/SiO2 ratio. The slag was activated mechanically by grinding the slag to 250, 360 and 420 m2/kg Blaine surface area, thermally by curing mortar specimens at 20°, 40° and 60 °C, and chemically by mixing the slag with two alkalis, NaOH and KOH at different concentrations. Samples were tested for compressive strength at the ages of 1, 3, 7, 28 and 90 days. All three methods enhanced the reactivity of the slag. The results indicated that the slag is very sensitive to temperature rise. Increase in fineness resulted in increased strength development and the fineness of the slag must be greater than that of the cement to achieve better performance. Alkali activation of slag results in increased strength development but the strength was lower than that of the control mortar.  相似文献   

16.
Mechanical characteristics of Fibre Reinforced High Performance Concrete (FR-HPC) subjected to high temperatures were experimentally investigated in this paper. Three different concretes were prepared: a normal strength concrete (NSC) and two High Performance Concretes (HPC1 and HPC2). Fibre reinforced concretes were produced by addition of steel or polypropylene fibres in the above mixtures at dosages of 40 kg/m3 and 5 kg/m3, respectively. A total of nine concrete mixtures were produced and fibres were added in six of them. At the age of 120 days specimens were heated to maximum temperatures of 100, 300, 500 and 700 °C. Specimens were then allowed to cool in the furnace and tested for compressive strength, splitting tensile strength, modulus of elasticity and ultrasonic pulse velocity. Reference tests were also performed at air temperature (20 °C). Residual strength of NSC and HPC1 was reduced almost linearly up to 700 °C and 500 °C, respectively whereas the residual strength of HPC2 was sharply reduced up to 300 °C. Explosive spalling was observed on both HPC. Addition of steel fibres increased the residual strength up to 300 °C, but spalling still occurred in HPC1 and HPC2. Such an explosive behavior was not observed when polypropylene fibres were added in the mixtures; however, in this case the residual mechanical characteristics of all concretes were significantly reduced.  相似文献   

17.
Activated carbon injection is the most mature technology for mercury capture from coal burning power plants; however, this technology increases the carbon content and mercury concentration in the fly ash. This, in turn, may reduce the suitability of fly ash for use in concrete and call into question the safety of using fly ash derived from this process. The focus of this paper is to investigate the reuse potential of post-mercury-control fly ash in concrete by examining the influence of three fly ashes derived from the activated carbon injection on the air content, compressive strength, permeability, and resistance to freezing and thawing of concrete mixtures. Laboratory testing confirmed the influence of the carbon on the air content of the concrete. However there was no difficulty in entraining air in activated carbon injection fly ash concretes within the recommended dosage range of the air-entraining admixture. All air-entrained fly ash concretes exhibited excellent characteristics in compressive strength (?32.0 MPa, 4641 psi at 28 days), resistance to chloride-ion penetration (moderate to low at 28 days of age) and freeze–thaw (?90 average durability factor after 300 cycles). The possible leaching of toxic elements including mercury from one fly ash sample used in this study was also evaluated using the US Environmental Protection Agency’s Toxicity Characteristic Leaching Procedure. The test results indicated that the leaching of toxic elements was much lower than the contamination level.  相似文献   

18.
An experimental investigation was conducted using an air-entraining agent and pozzolans such as silica fume and fly ash, to meet the design strengths 50 and 60 MPa, as well as frost resistance to 300 cycles of freezing and thawing. Among a series of concretes of grade 50 or 60 MPa, only a small part could resist 300 cycles of freezing and thawing. It was demonstrated that frost resistance might be independent on strength of concrete. By means of mercury intrusion porosimeter, the pore structure characteristics of six concretes were identified. Air entrainment, no matter whether the pozzolans were used, caused an increase in cumulative pore volume, and also an increase in the mean pore size. It is revealed that, as to concrete at a 0.32 water/binder ratio, air entrainment should be a main approach to enhance frost resistance, although the pozzolans could be used to increase long-term strength of concrete.  相似文献   

19.
The influence of supplementary cementitious materials (SCMs), namely silica fume, metakaolin, fly ash and ground granulated blast-furnace slag, on the engineering properties of high strength concrete (HSC) has been investigated in this study. Workability, compressive strength, elastic modulus, porosity and pore size distribution were assessed in order to quantify the effects of the different materials. The results show that the inclusion of the different SCMs has considerable influence on the workability of HSC. Silica fume and metakaolin significantly enhanced the strength of HSC. Fly ash reduced the early-age strength; however, it enhanced the long-term strength of the HSC. Likewise, ground granulated blast-furnace slag impaired the early-age strength, but marginally improved the long-term strength at low replacement levels. The general effect of the different SCMs on the elastic modulus of HSC is rather small compared to their effect on strength. There are good correlations between both static and dynamic moduli and compressive strength. The EC 2 and ACI 209 provide a good estimate of static modulus of elasticity from compressive strength, while the BS8110 gives a good estimate of static modulus of elasticity from dynamic modulus of HSC containing the different SCMs. Porosity and pore size were reduced with the addition of the different SCMs. The volume of mesopores in the ranges of <15 nm and 15 – 30 nm was notably increased for HSC containing SCMs, whereas the percentage of macropores was significantly reduced.  相似文献   

20.
This paper presents experimentally investigated the effects of pozzolan made from various by-product materials on mechanical properties of high-strength concrete. Ground pulverized coal combustion fly ash (FA), ground fluidized bed combustion fly ash (FB), ground rice husk–bark ash (RHBA), and ground palm oil fuel ash (POFA) having median particle sizes less than 11 μm were used to partially replace Portland cement type I to cast high-strength concrete. The results suggest that concretes containing FA, FB, RHBA, and POFA can be used as pozzolanic materials in making high-strength concrete with 28-day compressive strengths higher than 80 MPa. After 7 days of curing, the concretes containing 10–40% FA or FB and 10–30% RHBA or POFA exhibited higher compressive strengths than that of the control concrete (CT). The use of FA, FB, RHBA, and POFA to partially replace Portland cement type I has no significant effect on the splitting tensile strength and modulus of elasticity as compared to control concrete or silica fume concretes. This results suggest that the by-products from industries can be used to substitute Portland cement to produce high-strength concrete without alteration the mechanical properties of concrete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号