首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the results of the first phase of a study on the effect of the confinement provided by transverse carbon fiber reinforced polymer (CFRP) sheets on the fatigue bond strength of steel reinforcing bars in concrete beams. Reinforced concrete bond-beams 150 × 250 × 2000 mm were tested. The variables examined were the area of the CFRP sheets (none or one U-wrap CFRP sheet), the reinforcing bar diameter (20 or 25 mm) and the load range applied to the specimens. The results showed that increasing the bar diameter increased the fatigue bond strength for the unwrapped beams. The CFRP sheets increased the bond strength of the bond-beams with 20 mm bars. However, for the beams with 25 mm steel bars the failure mode changed from a bond splitting failure for the unwrapped beams to a diagonal shear failure for the CFRP wrapped beams, and there was little increase in fatigue strength. Finally, the bond failure mechanism for repeated loading is described.  相似文献   

2.
C20 and C30 classes of concrete are produced each with addition of Dramix RC-80/0.60-BN type of steel fibers (SFs) at dosages of 0, 30, 60 kg/m3, and their compressive strengths, split tensile strength, moduli of elasticity and toughnesses are measured. Nine reinforced concrete (RC) beams of 300 × 300 × 2000 mm outer dimensions, designed as tension failure and all having the same steel reinforcement, having SFs at dosages of 0, 30, 60 kg/m3 with C20 class concrete, and nine other RC beams of the same peculiarities with C30 class concrete again designed as tension failure and all having the same reinforcement are produced and tested under simple bending. The load versus mid-span deflection relationships of all these RC and steel-fiber-added RC (SFARC) beams under simple bending are recorded. First, the mechanical properties of C20 and C30 classes of concrete with no SFs and with SFs at dosages of 30 and 60 kg/m3 are determined in a comparative way. The flexural behaviours and toughnesses of RC and SFARC beams for C20 and C30 classes of concrete are also determined in a comparative way. The experimentally determined (mid-section load)–(SFs dosage) and (toughness)–(SFs dosage) relationships are given to reveal the quantitative effects of concrete class and SFs dosage on these crucial properties.  相似文献   

3.
The effect of different environmental conditions on the creep behavior of concrete beams reinforced with glass fiber reinforced polymer (GFRP) bars under sustained loads is investigated. This is achieved through testing concrete beams reinforced with GFRP bars and subjected to a stress level of about 20–25% of the ultimate stress of the GFRP bars. Reference beams were loaded in the temperature-controlled laboratory (24 ± 3 °C). Other test beams were either completely or partially immersed in different environments (tap-water and sea-water) at elevated temperature (40 ± 2 °C) to accelerate the reaction. During the exposure period, which lasted for ten months, strains in concrete and GFRP bars as well as the midspan deflections were recorded for all considered environmental conditions. The results show that the creep effect due to sustained loads was significant for all environments considered in the study and the highest effect was on beams subjected to wet/dry cycles of sea-water at 40 ± 2 °C.  相似文献   

4.
Steel fiber-added reinforced concrete (SFRC) applications have become widespread in areas such as higher upper layers, tunnel shells, concrete sewer pipes, and slabs of large industrial buildings. Usage of SFRC in load-carrying members of buildings having conventional reinforced concrete (RC) frames is also gaining popularity recently because of its positive contribution to both energy absorption capacity and concrete strength.This paper presents experimental and finite element analysis of three SFRC beams. For this purpose, three SFRC beams with 250 × 350 × 2000 mm dimensions are produced using a concrete class of C20 with 30 kg/m3 dosage of steel fibers and steel class S420 with shear stirrups. SFRC beams are subjected to bending by a four-point loading setup in certified beam-loading frame, exactly after having been moist-cured for 28 days. The tests are with control of loads. The beams are loaded until they are broken and the loadings are stopped when the tensile steel bars are broken into two pieces. Applied loads and mid-section deflections are carefully recorded at every 5 kN load increment from the beginning till the ultimate failure.One of the SFRC beams modeled by using nonlinear material properties adopted from experimental study is analyzed till the ultimate failure cracks by ANSYS. Eight-noded solid brick elements are used to model the concrete. Internal reinforcement is modeled by using 3D spar elements. A quarter of the full beam is taken into account in the modeling process.The results obtained from the finite element and experimental analyses are compared to each other. It is seen from the results that the finite element failure behavior indicates a good agreement with the experimental failure behavior.  相似文献   

5.
The aim of this study is the design, fabrication and experimentally characterization of an optimized polymer concrete (PC). To this end, three factors, namely: the aggregate size, epoxy resin weight percentage, and chopped glass fiber percentage; are considered as the influencing factors on the compressive strength, bending strengths and interfacial shear strength between the PC and steel. The number of tests which are necessary to simultaneously optimize three above strengths of the PC are reduced based on the design of experiment using the orthogonal array technique or so-called Taguchi method. Comparison of the predicted strengths based on the Taguchi approach with the measured experimental results shows a good correlation between them. Afterward, the effect of three freeze/thaw thermal cycles; 25 °C to ?30 °C (cycle-A), 25 °C to 70 °C (cycle-B) and ?30 °C to 70 °C (cycle-C) for 7 days; on the strengths of the optimized PC is experimentally investigated. Comparison of the experimental results for the mechanical strengths measured at room temperature (RT) and above thermal cycles shows that the compressive strength of the optimally designed PC is not affected by heating and cooling cycles. On the other hand, the bending strength is more affected by exposing PC to the thermal cycle-B. The interfacial shear strength becomes affected by exposing the PC to cycles-A and -B, whereas no changes are observed on this strength by exposing to the thermal cycle-C. In general, among the three thermal cycles, cycle-B exerted the most deteriorating effect on the strengths.  相似文献   

6.
Corrosion crack widths are often used by structural engineers in the field to predict level of steel corrosion as well as residual load-bearing capacities of corroding RC structures. This paper presents further work on this matter but with focus on corrosion crack patterns and how they affect rate of crack widening. It is based on results from a research where 17 quasi-full-scale (153 × 254 × 3000 mm) RC beams were corroded under various levels of sustained loads. The rate of widening of corrosion crack widths was found to be very much dependent on crack patterns. Deformation of cover concrete under each crack pattern was discussed. It was found that at maximum crack widths below 0.6 mm, the majority of beams exhibited nearly similar crack patterns as well as rate of widening of corrosion cracks. A mass loss of steel of 1% corresponded to a maximum crack width between 0.14 and 0.22 mm. At large crack widths (>0.6 mm), various beams exhibited very different rates of crack widening. It was shown that at crack widths above 0.6 mm, to be conservative an increase in mass loss of steel of 1% corresponded to corrosion crack widening of 0.02 mm.  相似文献   

7.
This paper presents the results of an experimental program to investigate the effect of high temperature on the performance of concrete externally confined with FRP sheets. For this purpose, a two-phase experimental program was conducted. In the first phase, 42 standard 100 × 200 mm concrete cylinders were prepared. Out of these specimens, 14 cylinders were left unwrapped; 14 specimens were wrapped with one layer of CFRP sheet; and the remaining 14 specimens were wrapped with one layer of GFRP sheet. Some of the unconfined and FRP-confined specimens were exposed to room temperature; whereas, other cylinders were exposed to heating regime of 100 °C and 200 °C for a period of 1, 2 or 3 h. After high temperature exposure, specimens were tested under uniaxial compression till failure. The test results demonstrated that at a temperature of 100 °C (a little more than the glass transition temperature (Tg) of the epoxy resin), both CFRP- and GFRP-wrapped specimens experienced small loss in strength resulting from melting of epoxy. This loss of strength was more pronounced when the temperature reached 200 °C. In the second phase of the experimental program, three 100 × 100 × 650 mm concrete prisms were prepared and then overlaid by one layer of CFRP and GFRP laminates for conducting pull-off strength tests as per ASTM D4541 – 09. The objective of this testing was to evaluate the degradation in bond strength between FRP and concrete substrate when exposed to elevated temperature environments. One prism was exposed to room temperature whereas the other two specimens were exposed to heating regime of 100 °C and 200 °C for a period of 3 h. It was concluded that a significant degradation in the bond strength occurred at a temperature of 200 °C especially for CFRP-overlaid specimens.  相似文献   

8.
The aim of this paper is primarily experimental and is intended to analyse the behaviour of two cementitious materials, before and after heat treatment: one unreinforced (i.e. without fibres) and the other reinforced (with polypropylene fibres).At room temperature and after heating up to 500 °C, the bending strength is improved by the presences of fibres. The residual young modulus is slightly higher for the fibres reinforced samples.As the temperature increases, the strength gain due to fibres inclusion is reduced. Beyond 500 °C, the bending strength is lower for the fibre reinforced cementitious material compared to those without fibres. Fracture energy is also improved for the fibre mortars at room temperature. At 400 °C this improvement decreases gradually with the introduction of polypropylene fibres. Beyond this temperature and due to the introduction of polypropylene fibres, the fracture energy is reduced.Another test is developed: rapid heating due to exposure to a flame. The temperature in the front side reaches in few seconds 1000 °C. At this temperature and after one hour of exposure, the opposite side reached 140 °C. After cooling, the punching shear strength of the fibre mortar is definitely weaker than of the mortar without fibre.  相似文献   

9.
《Fire Safety Journal》2006,41(2):115-121
Cubes of 100×100×100 mm3 and cylinders of 100×100×515 mm3 were designed and fabricated with C50, C80 and C100 high-performance concrete (HPC) mixed with and without polypropylene (PP) fibres, respectively. These specimens were heated in an electric furnace, approximately following the curve of ISO-834, with a series of target temperatures ranging from 20 to 900 °C. No explosive spalling was observed during the fire test on HPC specimens with PP fibres, whereas some spalling occurred for HPC specimens without PP fibres. The relationship between the mass loss and the exposure temperature was investigated. In addition, the heated and cooled cubes and prisms were tested under monotonic compressive loading and four-point bending loading, respectively. The degradation of both the residual compressive strength and the residual flexural strength was analyzed. Furthermore, the effects of PP fibres on the residual mechanical strength of HPC specimens at elevated temperatures were also investigated. Finally, a fire-resistance design curve relating the residual compressive strength to temperature, as well as a design curve relating the residual flexural strength to temperature, were proposed based on the statistical analysis of the test data.  相似文献   

10.
Permeability is one of the most important parameters to quantify the durability of high-performance concrete. Permeability is closely related with the spalling phenomenon in concrete at elevated temperature. This parameter is commonly measured on non-thermally damaged specimens. This paper presents the results of an experimental investigation carried out to study the effect of elevated temperature on the permeability of high-performance concrete. For this purpose, three types of concrete mixtures were prepared: (i) control high-performance concrete; (ii) high-performance concrete incorporating polypropylene fibres; and (iii) high-performance concrete made with lightweight aggregates. A heating–cooling cycle was applied on 160 × 320 mm, 110 × 220 mm, and 150 × 300 mm cylindrical specimens. The maximum test temperature was kept as either 200 or 600 °C. After the thermal treatment, 65 mm thick slices were cut from each cylinder and dried prior to being subjected to permeability test. Results of thermal gradients in the concrete specimens during the heating–cooling cycles, compressive strength, and splitting tensile strength of concrete mixtures are also presented here. A relationship between the thermal damage indicators and permeability is presented.  相似文献   

11.
In this research, three types of artificial or engineered stones were compared against two types of natural stones (a limestone and a granite) in what concerns to temperature, thermal ageing and thermal shock effects on flexural strength and Young’s modulus. Temperatures of the thermal treatments, in the range from 20 to 200 °C, were intentionally chosen to simulate some practical applications of this kind of materials, for example, when they are used as kitchen tops. The results reveal the different characteristics of the materials. When tested at temperatures up to 100 °C, engineered stones show much higher values of flexural strength compared to the natural stones; and when tested at ambient temperature after being submitted to rapid cooling (thermal shock) from 200 °C down to 20 °C, engineered stones continue to show higher values of flexural strength compared to the natural stones. For the temperature range from 20 to 200 °C, thermal shock and thermal ageing effects on Young’s modulus are not very pronounced. Young’s modulus (E) of each of the materials was determined at ambient temperature, and the engineered stones keep almost the same value of E after thermal ageing or thermal shock up to 160 °C.  相似文献   

12.
Eighty pull-out specimens were used to study the effect of temperature ranging from 20 °C to 80 °C in dry environment on bond properties between Glass Fiber Reinforced Polymer (GFRP) bars and concrete. The pullout-test specimens were subjected during 4 and 8 months to high temperatures up to 80 °C and then compared to untreated specimens (20 °C). Experimental results showed no significant reduction on bond strength for temperatures up to 60 °C. However, a maximum of 14% reduction of the bond strength was observed for 80 °C temperature after 8 months of thermal loading. For treated specimens, the coefficient β in the CMR model, which predicts the bond–stress–displacement behavior, seems to be dependant with the temperature.  相似文献   

13.
The paper presents results of an investigation conducted to study the impact resistance of steel fibre reinforced concrete containing fibres of mixed aspect ratio. An experimental investigation was planned in which 108 plain concrete and SFRC beam specimens of size 100 × 100 × 500 mm were tested under impact loading. The specimen incorporated three different volume fractions i.e. 1.0%, 1.5% and 2.0% of corrugated steel fibres. Each volume fraction incorporated mixed steel fibres of size 0.6 × 2.0 × 25 mm and 0.6 × 2.0 × 50 mm in different proportions. The drop weight type impact tests were conducted on the test specimens and the number of blows of the hammer required to induce first visible crack and ultimate failure of the specimen were recorded. The results are presented in terms of number of blows required as well as impact energy at first crack and ultimate failure. It has been observed that concrete containing 100% long fibres at 2.0% volume fraction gave the best performance under impact loading.  相似文献   

14.
The effect of high temperatures, up to 250 °C, on mechanical properties of normal and high strength concretes with and without silica fume was investigated, and image analysis was performed on split concrete surfaces to see the change in bond strength between aggregate and mortar. Specimens were heated up to elevated temperatures (50, 100, 150, 200, 250 °C) without loading and then the residual compressive and splitting tensile strength, as well as the static modulus of elasticity of the specimens were determined. For normal strength concrete residual mechanical properties started to decrease at 100 °C, while using silica fume reduced the losses at high temperatures. In terms of percent residual properties, high strength concrete specimens performed better than normal strength concrete specimens for all heating cycles. Image analysis studies on the split surfaces have been utilized to investigate the effect of high temperatures on the bond strength between aggregate and mortar. Image analysis results showed that reduced water–cement ratio and the use of silica fume improved the bond strength at room temperature, and created more stable bonding at elevated temperatures up to 250 °C.  相似文献   

15.
Multiaxial tensile–compressive tests were performed on 100 mm × 100 mm × 100 mm cubic specimens of plain high-performance concrete (HPC) at all kinds of stress ratios after exposure to normal and high temperatures of 20, 200, 300, 400, 500, and 600 °C, using a large static–dynamic true triaxial machine. Friction-reducing pads were three layers of plastic membrane with glycerine in-between for the compressive loading plane; the tensile loading planes of concrete samples were processed by attrition machine, and then the samples were glued-up with the loading plate with structural glue. The failure mode characteristic of specimens and the direction of the crack were observed and described, respectively. The three principally static strengths in the corresponding stress state were measured. The influence of the temperatures, stress ratios, and stress states on the triaxial strengths of HPC after exposure to high temperatures were also analyzed respectively. The experimental results showed that the uniaxial compressive strength of plain HPC after exposure to high temperatures does not decrease completely with the increase in temperature, the ratios of the triaxial to its uniaxial compressive strength depend on brittleness–stiffness of HPC after different high temperatures besides the stress states and stress ratios. On this basis, the formula of a new failure criterion with the temperature parameters under multiaxial tensile–compressive stress states for plain HPC is proposed. This study is helpful to reveal the multiaxial mechanical properties of HPC structure enduring high temperatures, and provides the experimental and theory foundations (testing data and correlated formula) for fire-resistant structural design, and for structural safety assessment and maintenance after fire.  相似文献   

16.
This study investigates the effects of elevated temperatures on the residual mechanical performance of concrete produced with recycled rubber aggregate (RRA). Four different concrete compositions were prepared: a reference concrete (RC) made with natural coarse aggregate and three concrete mixes with replacement rates of 5%, 10% and 15% of natural fine and coarse aggregate by RRA from used tyres. Specimens were exposed for a period of 1 h to temperatures of 400 °C, 600 °C and 800 °C, after being heated in accordance with ISO 834 time–temperature curve. After cooling down to ambient temperature, the compressive strength and the splitting tensile strength were evaluated and compared with reference values obtained prior to fire exposure. For the replacement rates used in the present experiments, the obtained results show that concrete made with recycled rubber aggregate (CRRA) present a thermal response that is roughly similar to that of RC; in addition, although residual mechanical properties of CRRA are noticeably more affected than those of RC, particularly for higher exposure temperatures, the relative reduction should not prevent it from being used in structural applications.  相似文献   

17.
This paper presents results of an investigation on the variation of mass loss of deformed tensile steel bars in RC beams (153 × 254 × 3000 mm) that were corroded whilst under a sustained load using an impressed current, constant wetting cycles with 5% NaCl solution and two different drying cycles. Following the corrosion test, selected beams were patch repaired whilst under a sustained load, but eventually all beams were tested to failure. The results indicated that the highest level of corrosion occurred where there were longer drying cycles, and that the level of sustained load had little effect on the rate of corrosion. Maximum mass loss of steel was found to occur at the centre of the corrosion region. The ultimate flexural capacity of beams was found to be best related to the maximum gravimetric mass loss compared to the average mass loss of steel. A maximum mass loss of steel of 1% was found to reduce the flexural capacity of beams by 0.7%.  相似文献   

18.
A parameter-based acoustic emission (AE) technique is applied to AE signals acquired in physical experiments carried out on a series of predamaged reinforced concrete slabs. Three reinforced concrete slabs without shear reinforcement with dimensions of 1.50 × 1.50 × 0.23 m are subjected to cycles of a concentrated centric load with increasing peak values up to failure. The slabs had been previously exposed to impact loads in rockfall experiments and exhibit an unknown damage condition yet to be determined. Acoustic emissions are recorded during the loading and unloading cycles and evaluated. An analysis of load ratio and calm ratio associated with the Kaiser effect is performed. Damage classification is carried out successfully. Definitions of load ratio and calm ratio are reconsidered and specified. A static preloading of the slabs is approximated. The relationship between cracking process, failure mechanism and the acoustic emissions that occur is described and discussed.  相似文献   

19.
The effectiveness of strengthening reinforced concrete (RC) beams with prestressed near-surface mounted (NSM) carbon fiber reinforced polymer (CFRP) rods was investigated. Four RC beams (254 mm deep by 152 mm wide by 3500 mm long) were tested under monotonic loading. One beam was kept un-strengthened as a control beam. One beam was strengthened with a non-prestressed NSM CFRP rod. Two beams were strengthened with prestressed NSM CFRP rods stressed to 40% and 60% of the rod’s ultimate strength. The test results showed that strengthening with non-prestressed NSM CFRP rod enhanced the flexural response of the beam compared to that of the control beam. A remarkable improvement in the response was obtained when the RC beams were strengthened with prestressed (40% and 60%) NSM CFRP rods. An increase up to 90% in the yield load and a 79% in the ultimate load compared to those of the control beam were obtained. An analytical model was developed using sectional analysis method to predict the flexural response of RC beams strengthened with prestressed NSM CFRP rods. The proposed model showed excellent agreement with the experimental results.  相似文献   

20.
The cracking and subsequent fallout of glazing could significantly affect compartment fire dynamics by creating a new opening for air to enter. Twenty-four 1200×1200×6 mm3 soda-lime glass panes in eight different fixing forms were heated by a 500×500 mm2 N-heptane pool fire to investigate the influence of fixing conditions on glass breakage and fallout. The time of crack initiation, behavior of crack propagation, heat release rates, central gas temperatures, glass surface temperatures and loss of integrity of the glazing assembly were investigated. The relationship between fixing form and crack behavior is discussed, based on the experimental results. The results show that all the cracks initiated at the supporting point and intersected rapidly, causing glass fallout. Mechanical stress caused by supporting pins and thermal stress caused by glass temperature difference (ranging from 48 °C to 159 °C) are the causes of breaking for this kind of curtain wall. It is concluded that various fixing locations have a significant effect on glass breaking. Among the eight cases, the glass panes whose supporting points were located at 10 cm (Case 1) or 5 cm (Case 8) from the edges performed best: these support locations are recommended in practical engineering because of the good fire resistance and structural beauty of such panes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号