首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 78 毫秒
1.
基于机器学习的暂态稳定评估方法主要采用监督学习方法,为了解决监督学习方法所需的有标签样本难以获取的问题,提出基于三体训练-稀疏堆叠自动编码器(Tri-training-SSAE)半监督学习算法的电力系统暂态稳定评估方法。构建基于堆叠稀疏自动编码器的暂态稳定评估模型;在传统的三体训练过程中加入伪标签样本置信度判断,以减小噪声数据对模型训练的影响;以堆叠稀疏自动编码器为基分类器构建三体训练-稀疏堆叠自动编码器模型,利用大量的无标签样本提高模型的泛化能力。通过IEEE 39节点系统与华东某省级电网进行分析验证,结果表明,所提方法在有标签样本数较少时具有更高的评估准确度。  相似文献   

2.
为了充分利用可再生能源,增强电力系统各区域间的互联协调能力,提出了一种基于目标级联分析(ATC)法的输电网结构优化模型。首先,利用母线撕裂法将电力系统解耦为多区域互联系统;其次,建立含可再生能源发电的输电网结构优化模型,在此基础上,进行多区域互联电力系统的统一分析和决策;再次,采用ATC法将模型分解为主问题和子问题进行并行计算,实现源网荷协同的输电网结构优化。最后,通过对IEEE 14节点及IEEE 118节点系统的测试分析,验证了所提模型可有效协调互联电网的运行,提高电力系统运行的经济性。  相似文献   

3.
电力系统可靠性评估逆问题是指从已知的可靠性指标值出发求取未知的元件可靠性参数的问题,是电力系统可靠性领域一个重要的潜在研究方向。只有在待求可靠性参数个数与可靠性指标个数相等的特殊情形下,采用现有的逆问题研究方法才能取得参数的准确值。针对以上不足,首先,基于可靠性指标解析计算函数,构建逆问题的非线性方程组模型。其次,为计及已知可靠性指标个数大于、等于或小于待求参数个数的3种情形,将方程组模型转化为优化问题,建立逆问题的一般性模型。针对逆问题存在多解的情形,以可靠性参数优化为例,说明如何构建对应于具体工程问题的逆问题模型。然后,提出基于改进区间优化算法的逆问题求解方法,该方法能够在逆问题的不同情形之间进行切换,并确保求得最优解。最后,将所提方法应用于RBTS、IEEE-RTS系统和91节点系统,算例结果表明:针对逆问题的上述3种情形,采用所提方法均可有效求得准确的元件可靠性参数。  相似文献   

4.
由于风电出力的波动及送出线路发生故障时故障电流的频偏特性,风电场送出线路纵联保护灵敏度下降甚至拒动,因此提出了基于边缘检测的风电场送出线路纵联保护算法。通过将风电场送出线路两侧采集到的电流构造为矩阵形式,并使用Sobel算子进行边缘检测,从而确定电流采样值变化大的部分。然后通过所识别到的线路两侧电流采样值变化大的部分计算平均梯度幅值并与整定值相比较,实现区内故障和区外故障的快速识别。最后通过PSCAD/EMTDC搭建了大规模风电场送出系统模型,验证了所提算法的适用性、速动性及抗过渡电阻能力。与现有送出线路的纵联保护相比,所提方法在风电场弱出力的情况下仍适用,且动作速度更快。  相似文献   

5.
现有的异常用电检测方法存在未考虑电力用户的位置信息、模型参数选取困难的问题。据此,提出了一种基于线性判别分析(LDA)和密度峰值(DPeaks)聚类的双判据无监督异常用电检测模型。该模型遵循“特征构造—维度规约—聚类—异常检测”的流程,借助聚类算法将用电模式类别不同的用户进行分类后再检测。在维度规约模块,使用线性判别分析将用户的台区号输入检测模型,提升了模型的检出率和精确率;在异常检测模块,设置双判据检测标准,减小了模型对参数摄动的敏感程度。采用该模型检测爱尔兰智能电表数据,结果表明用户位置信息的引入可以提高异常检测模型的准确度。  相似文献   

6.
新型电力系统的高比例可再生能源、高比例电力电子设备特性给电力系统分析与决策带来巨大挑战。以深度学习(deep learning,DL)为代表的数据驱动技术擅长应对大规模高维非线性数据建模问题,在电力系统分析与决策的应用愈发受到业界的关注。作为近年来的热门分支之一,图深度学习(graph deep learning,GDL)将DL技术拓展到了不规则拓扑关联数据的处理,加快DL技术实用化的步伐。该文对电力系统分析与决策各领域的任务需求、DL应用现状做了简要归纳,结合GDL的发展脉络与前沿热点技术,全面总结GDL在电力系统分析与决策应用优势与不足,围绕通用性/迁移性、可靠性以及可解释性等方面探讨GDL框架的未来发展思路。  相似文献   

7.
针对巡检图像中绝缘子缺陷尺度不一造成检测效果不佳的问题,提出了一种基于多尺度上下文感知的绝缘子缺陷检测网络,称为上下文感知缺陷检测网络(context aware defect detection network,CAD2Net)。该网络采用ResNeSt101架构提高了对图像的特征提取能力。设计了改进特征金字塔结构,构建不同分辨率的丰富语义特征图,以更好地检测不同尺度的目标。同时,在网络的检测单元中增加感受野自适应(adaptive receptive field,Ada-RF)模块聚合多尺度上下文信息,生成更具辨别力的特征,改善网络对不同尺度目标的检测效果。在随机生成缺陷的样本集及公开数据集上的平均检测精度分别达到91.7%及91.0%。结果表明:所提出的缺陷检测网络能够对不同尺度绝缘子的缺陷进行准确识别与定位。  相似文献   

8.
构建新型电力系统,是促进“双碳”目标实现的重要举措。随着新型电力系统建设的不断推进,电力系统的不确定因素愈加凸显,且相互耦合,给电力系统运行调度带来了极大挑战。针对考虑电力系统不确定因素的调度问题,近年来涌现了大量研究成果。为了总结当前电力系统不确定调度的研究现状,理清仍需解决的问题及关键技术,明确未来研究方向和着力点,开展了系统的研究综述工作。从文献发表的内容、期刊和年份等方面进行分析,提炼电力系统不确定性调度的研究热点,分析了电源、负荷、市场环境、参数和政策5个方面所涉及到的不确定因素;将电力系统不确定性调度模型分为Wait-and-See和Here-and-Now两种类型,并归纳总结了不同模型对应的求解方法;然后基于现有的研究成果,探讨了不确定优化调度在新型电力系统中的应用;最后,对全文进行了总结,展望了未来的发展方向。研究成果为了解和应用新型电力系统不确定性调度的研究提供了参考模型和方法,也为深入研究和解决新型电力系统不确定性调度问题提供了思路和方向。  相似文献   

9.
针对不同电气输入特征与电力系统暂态稳定关联程度不同以及当输入特征受到干扰时评估准确率明显下降的问题,提出一种基于Fisher Score特征选择的电力系统暂态稳定评估方法。设计一种面向电力系统暂态稳定评估二分类问题的样本特征Fisher Score值计算方案;通过Fisher Score值排序有效区分重要特征与冗余特征、噪声特征与非噪声特征;将选择的电气特征输入不同机器学习模型中进行训练和评估。新英格兰39节点系统和IEEE 145节点系统的仿真结果表明,所提特征选择方案能有效筛选电力系统暂态稳定评估中重要度高的特征,提升了评估模型的预测性能。  相似文献   

10.
针对不同类型人工智能网络应用于电力系统暂态稳定评估时精度和泛化能力不稳定、运行方式或拓扑结构发生较大变化时评估精度下降、重新训练新模型费时费力等问题,提出一种融合多类型深度迁移学习模型(tmDLM)的自适应评估方法,该方法融合了深度置信网络、卷积神经网络以及长短期记忆网络3种不同的深度学习模型。将训练好的各类深度学习模型作为源域模型,当运行方式或拓扑结构发生较大变化时,采用少量目标域样本集微调预训练模型,使其快速跟踪系统当前的运行状态,并得到tmDLM。新英格兰10机39节点系统和华中电网的仿真结果表明:所提方法可以充分发挥各类深度学习方法的优势,具有良好的泛化能力;六分类模型能够在判稳的同时进行稳定裕度/失稳程度等级的评估;经过迁移后的深度学习模型具有良好的评估精度和时效性,大幅缩短了模型更新时间,实现了电力系统暂态稳定的自适应评估。  相似文献   

11.
针对红外图像中变电设备的识别和定位问题,提出了一种基于改进YOLOv3算法的变电设备检测方法.在现场采集的变电设备红外图像集的基础上,首先使用基于Retinex的图像增强算法以及阈值分割等图像处理方法对图像集进行预处理;然后基于变电设备红外图像对YOLOv3算法进行参数优化,并通过迁移学习的策略对改进YOLOv3网络进...  相似文献   

12.
电力金具作为输电线路中的不可缺少的关键部件,对电力稳定传输提供了保障,一旦电力金具出现缺陷,就会带来巨大的隐患,造成输电设施的损坏甚至大面积停电事故,影响人们的生产和生活。传统的输电线路检修主要依靠人工现场进行巡检,不仅危险程度高,辨识难度也比较大。人工智能识别技术的不断进步,为电力金具的缺陷识别提供了更好的方法。目前Faster-RCNN算法的目标识别准确率高,但对于螺钉等小金具目标物体的识别率相对较低。本文首先通过双特征融合算子提取特征并进行标记后,输入引进混合注意力机制改进的Faster R-CNN模型中,进行特征再提取,融合重合度较高的特征,并进行缺陷的分类和识别,能够对电力小金具中的螺钉进行高效的辨识。实验结果表明,本文双特征融合的改进Faster R-CNN模型相较于传统的Faster R-CNN模型和YOLO模型的提升效果明显,模型的平均准确率提升了5%,平均精度提升了11%,在保障算法实时性的同时对螺钉等电力小金具具有较好的检测效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号