首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this investigation was to study the effect of drying temperature and beeswax (BW) content on moisture sorption behavior of whey proteins emulsion films. For this purpose, films were obtained by the casting method and dried at two selected temperatures (5 and 25 °C) and constant relative humidity (RH) (58%). After drying, films were removed from the casting plates and were conditioned in the environmental chamber set at 25 °C and 58% RH for 3 days. Subsequently, portions of 400 mg of film were placed in glass bottles and pre-dried in desiccators containing drierite (aw=0) during 10 days. Then, the bottles were placed in hermetically sealed glass jars containing 10 different desiccants to achieve aw ranging from 0.11 to 0.90, and allowed to reach equilibrium. The analyses were made in quintuplicate at 25 °C. The equilibrium moisture content (EMC) was determined by drying samples in an oven and the experimental data were fitted by the Brunauer-Emmett-Teller (BET) and the Guggenheim-Anderson-De Boer (GAB) models. The results showed that both models were effective to describe the moisture sorption behavior of the films. The GAB model gave better fit than the BET model. The increase of the drying temperature of 5 to 25 °C and the incorporation of lipids reduced the EMC of whey protein emulsion films. Finally, data from experimental sorption isotherms are a useful tool to predict the effect of the environmental conditions that surround the film on its properties; particularly considering that the stability of an edible film is function of its mechanical and moisture barrier properties and both are strongly influenced by the presence of water, film formulation and drying and storage conditions.  相似文献   

2.
R.K. Vishwakarma  S.K. Nanda 《LWT》2011,44(4):969-975
Moisture adsorption isotherms of guar grain and guar gum splits were determined at 10, 20, 30 and 40 °C and 23-96% relative humidities using gravimetric method. The sorption data were fitted to six well-known sorption isotherm models (modified Chung-Pfost, modified Halsey, modified Henderson, modified Oswin, Chen-Clayton, and GAB models) using non-linear least square method. The GAB model was found the most satisfactory for representation of the equilibrium moisture content data for guar grain and guar gum splits. The equilibrium moisture content of guar gum splits was found to be significantly higher (p < 0.05) than that of guar grain. The isosteric heat of sorption was determined from the equilibrium moisture adsorption data using Clausius-Clapeyron type equation. Exponential relationship described well the dependence of isosteric heat of sorption on the equilibrium moisture content. The enthalpy-entropy compensation theory applied to sorption isotherms indicated enthalpy controlled sorption process.  相似文献   

3.
The equilibrium moisture contents (MC) of leaves and stems of lemon balm (Melissa officinalis L.) were determined separately at temperatures of 25, 35 and 45 °C over a stepwise increase of relative humidity (RH) ranging from 3 to 90% by an automatic, gravimetric analyzer (DVS system). Equilibrium was achieved within 6 h for most of the target values of relative humidity. The equilibrium moisture content of leaves was significantly higher than that of stems (p < 0.05). Differences in moisture sorption capacity between the leaves and stems can be attributed to chemical composition and structure of the tissues. Five three-parameter moisture sorption models (modifications of Chung–Pfost, GAB, Halsey, Henderson and Oswin) were tested for their effectiveness to fit the experimental sorption data. The modified Oswin equation was found to be the best model to describe the adsorption isotherms of both leaves and stems of lemon balm. The recommended MC values of leaves and stems for microbial safe storage at 25 °C were 0.124 and 0.113 kg water per kg dry solids, respectively. The net isosteric heat of sorption was computed from the predicted sorption data by applying the integrated form of the Clausius–Clapeyron equation.  相似文献   

4.
《Journal of food engineering》2009,95(3-4):334-343
A simplified algorithm of prediction of water sorption isotherms for some foods was developed. This model is based on the composition of the main compounds of foods (glucose, fructose, sucrose, salt, protein, fibre and starch) and the influence of temperature was included (it was tested at 25 and 40 °C). Reported experimental data were employed as reference to validate the developed prediction model. Sorption isotherms for apple, apricot, banana, chestnut, loquat, quince, raisin, carrot, garlic, pepper, pumpkin, turnip, potato, bean, chickpea and lupine were predicted and compared to those reported in literature. The proposed model was able to predict the presence or absence of crossing between sorption isotherms at different temperatures for the same food. Using the prediction model could be calculated equilibrium moisture content with a determination coefficient (R2) of (>0.982), a mean relative error (E) of (<9.43%) and a standard error (ERMS) of (<0.042 kg (kg d.b.)−1).  相似文献   

5.
High hydrostatic pressure (HHP) treatments can improve the potential of orange, mango, and prickly pear peels as food formulation fiber sources. Akaike Information Criteria differences identified Peleg and GAB as the best model alternatives to describe experimental moisture isotherms. HHP (600 MPa/10 min/22 and 55 °C) effects on moisture isotherms expressed as relative water sorption content change with respect to controls (RWSCaw) showed that in the 0.1–0.93 aw range, HHP improved the adsorption water retention of orange peels. The same was true for the desorption water retention for all HHP-treated fruit peels except for prickly pear HHP-treated at 22 °C and > 0.35 aw. The area under the hysteresis curve (AH) in the 0.15–0.51 aw range showed that HHP increased hysteresis for all fruit peels tested. All this illustrates the HHP potential to modify the hygroscopic properties of fruit peels at lower temperature and in less processing time than conventional processes.Industrial relevanceOrange, mango, and prickly pear peels are potential food fiber formulation sources with differentiated hygroscopic and functional properties. In this study, 600 MPa treatments at 22 and 55 °C for 10 min modified the adsorption and desorption moisture retention capacity of all fruit peels tested in this study. HHP technology can improve the potential of fruit peels as dietary fiber sources with the advantage of shorter processing times and lower temperatures than conventional technologies used to treat food fibers.  相似文献   

6.
Moisture sorption isotherms were determined for defatted canola meal at 16, 22, and 34°C. The isotherms were fitted to the Guggenheim-Anderson-deBoer (GAB) sorption equation. This equation was then used to develop a packaging model that predicted the changes of moisture con-tent of canola meal under stated environmental and packaging conditions. The model was tested using Melinex 813 (12 μm) and Propafilm C (28 μm) packaging films at 86% relative humidity and 23°C. The GAB equation provided a good fit to experimental data (<3% RMS). The monolayer moisture content of the meal was 9.5%. The enthalpy of sorption of the monolayer at 22°C was 84.61 KJ/mol. The model predicted the time required by packaged canola to attain a selected moisture content ± 0.5 days.  相似文献   

7.
In order to develop a mathematical model to simulate mass transfer occurring between the crumb and the crust during bread staling, water vapor sorption properties, i.e., moisture diffusivity, WVP and sorption of bread crumb and crust were investigated at 15 °C. Two types of bread baked with two heating rates (7.39 °C/min and 6.32 °C/min) were considered. Sorption and desorption isotherms were determined using Dynamic Vapor Sorption (DVS) and FF and GAB models were applied in the range of 0–0.95 aw, to fit isotherm curves. Diffusivity was determined from sorption isotherms by using Fick's law and WVP was measured by two methods (gravimetric and from sorption data). Results exhibited maximum values of Deff in the range of 0.1 and 0.14 g/g d.b. moisture contents. They varied between 0.88 × 10? 10 and 0.92 × 10? 10 m2/s for the crust and between 2.24 × 10? 10 and 2.64 × 10? 10 m2/s for the crumb, baked respectively at 220 °C and 240 °C. Results of WVP showed that the crust baked at 240 °C was significantly more permeable than the crust baked at 220 °C. This fact was attributed to the difference in porosity and the molecular structure due to heating effects. Also, the presence of steam in the oven atmosphere enhanced the development of higher porosity in the crust, leading to different structures and properties. Moreover, SEM images showed that starch granules were intact and less swelled in the upper crust when baking at 240 °C, resulting in higher WVP.  相似文献   

8.
Water barrier properties of three treated papers and of one plastic film were compared and the potential of these packaging films to prevent moisture loss from a sponge cake during storage in standard conditions (25 °C and 50% relative humidity gradient) was evaluated. Sorption isotherms were established at 25 °C for both sponge cake and papers, from which diffusivity values in papers were determined for the whole range of Aw. Permeability of packaging films was determined in standard conditions. Water sorption was close for all papers, regardless of their treatment, whereas water diffusivity was reduced by coating or calendering. Water vapor permeability in papers was controlled by diffusivity which was characterized by a two-phases (vapor then bulk water state) mechanism. Calendered-coated papers and plastic film were both adapted to prevent moisture loss from intermediate moisture foods such as a sponge cake during usual storage time.  相似文献   

9.
The sorption isotherms of Oolong tea were determined at temperatures ranging from 5 to 50 °C. Estimated parameters and fitting ability for nine equilibrium relative humidity (ERH) models were evaluated. The modified Oswin equations were found to be an adequate model of three parameters to describe the sorption data. The Andrieu model was the only adequate model of four parameters. In comparing the results of this study with previously published data, it was found that the sorption properties were affected by species and manufacture techniques. The Guggenheim–Anderson–de Boer (GAB) model was not an adequate model as indicated by checking residual plots. The monolayer moisture content calculated from the Brunauer–Emmett–Teller (BET) model was lesser than that calculated from the GAB model. The errors of moisture content determined by measuring the ERH and temperature of samples was within 0.35%.  相似文献   

10.
Equilibrium and dynamic water sorption properties of sponge cakes with varying porosity (86–52%) and fat content (0–0.30 g/g d.b.) were determined using a water vapour sorption microbalance. Contrary to porosity, addition of fat decreased equilibrium moisture contents. The effective moisture diffusivity (Deff) was identified from a numerical solution of Fick’s second law, taking into account an external mass transfer coefficient and the swelling of the solid matrix. Deff increased from 1.61 to 8.67 × 10−10 m2/s with moisture content, reached a threshold at moisture content 0.15 g/g d.b. and then decreased until water saturation. Deff decreased from 8.67 to 2.97 × 10−10 m2/s with decreasing porosity. This effect was attributed to a change of water diffusion mechanism, from predominant vapour to liquid. Deff decreased from 8.67 to 2.12 × 10−10 m2/s with increasing fat content. Addition of fat had an effect on the water diffusion in two ways, decreasing porosity (sagging of the foam) and increasing tortuosity.  相似文献   

11.
The equilibrium moisture contents of saffron (Crocus sativus L.) stigmas were determined experimentally using the standard gravimetric method at temperatures 30, 45 and 60 °C and water activity ranging from 11% to 83%. The sorption isotherm curves of saffron were sigmoidal in shape and decreased with increased temperature at constant relative humidity. Five selected isotherm models GAB, modified Henderson, modified Chung‐Pfost, modified Halsaey and modified Oswin were tested to fit the experimental isotherm data. Modified Oswin and modified Henderson models were found acceptable for predicting desorption moisture isotherms and fitting to the experimental data, respectively. The isosteric heats of desorption, determined from equilibrium data using the Clausius‐Clapeyron equation, were found to be a function of moisture content. The net isosteric heat of desorption of saffron varied between 1.38 and 5.38 kJ mol?1 at moisture content varying between 2% and 20% (d.b).  相似文献   

12.
《Meat science》2010,84(4):642-646
The aim of this study was to obtain and compare water desorption isotherms of ground meat containing NaCl (0.107 kg NaCl/kg raw-meat dry matter) and/or K-lactate as NaCl substitute at two different levels of molar substitution (30% and 100%). A thin layer of salted ground meat was dried and sampled at pre-determined times. The moisture content of the samples and their water activities (aw) were measured at 5 °C and 25 °C. Results showed that ground meat with NaCl and/or different K-lactate contents had a similar water desorption isotherm for aw ranging from 0.7 to 1.0. Below 0.7, the water equilibrium content fell with small decreases in aw faster for meat with NaCl than for meat with K-lactate. K-lactate could reduce the excessive hardening at the surface of salted meat products. Experimental desorption isotherms were compared to those estimated using two approaches of the Ross equation. Models provided a good fit for the experimental data.  相似文献   

13.
The moisture sorption isotherm data of walnut kernels stored in a chamber, the relative humidity (r.h.) of which is regulated by atomizing humidifier, were determined at three different temperatures (25, 35 and 45 °C) and r.h. ranging from 10% to 90%. Eight models, namely the GAB, BET, Henderson, Iglesias and Chirife, Oswin, Peleg, Smith and Caurie equations, were fitted to the sorption data. Several statistical tests were adopted as the criteria to evaluate the fitting performance of the models. Of the models tested, the Peleg model gave the best fit to experimental data. The surface area of a monolayer was calculated. The BET equation was applied to the monolayer moisture content and the corresponding aw values at which a monolayer forms are presented. The experimental data were also used to determine the thermodynamic functions such as isosteric heat of sorption, sorption entropy, spreading pressure, net integral enthalpy and entropy. The sorption isosteric heats for walnut kernels were determined by the application of the Clausius-Clapeyron equation to sorption isotherms obtained from the best-fitting equation. Isosteric heats decreased with increase in moisture content and approached the latent heat of pure water. Adsorption entropy increased with increasing moisture content, and then it decreased sharply with increase in moisture content. The spreading pressures (adsorption and desorption) increased with increasing water activity. Net integral enthalpy of adsorption increased slightly with moisture content to a maximum value. Thereafter, it remained constant. Net integral entropy of adsorption was negative in value and it decreased with increase in moisture content to a minimum value, and then increased slightly with increase in moisture content.  相似文献   

14.
The equilibrium moisture contents of litchi (Litchi Chinensis Sonn.) were experimentally determined using the dynamic method at temperatures of 30, 40, and 50°C over a range of relative humidity values of 12 to 95%. Five models were tested to fit the experimental isotherm data of litchi. The GAB model fitted the best to experimental isotherm data. The agreement between experimental and predicted values of this model is excellent (RMSE 1.8 to 3.4%). The isosteric heats of sorption water were also determined from the equilibrium data using the Clausius-Clapeyron equation and it was found to be a function of equilibrium moisture content.  相似文献   

15.
Moisture sorption isotherms were measured for whey protein isolate, high micellar casein and a milk protein concentrate powder. No temperature dependence was observed over the temperature range of 4–37 °C. At 50 °C the powders absorbed less moisture than observed at the lower temperatures. These isotherms were used to predict the isotherms for freeze-dried amorphous lactose/casein/whey protein powders. An isotherm for micellar casein was predicted using a simple additive isotherm model and was used along with isotherms for whey protein and amorphous lactose to predict moisture sorption isotherms for commercial dairy powders. Predicted isotherms compared well with measured isotherms indicating that this simple additive isotherm model is suitable for predicting moisture sorption isotherms of dairy powders. Delayed lactose crystallisation was observed in lactose/whey protein powders when compared to lactose/casein powders over the same water activity range.  相似文献   

16.
The moisture sorption isotherms of untreated banana flour (UBF) and acid treated banana flours (ATBFs) were determined using the static gravimetric method of saturated salt solutions at temperatures of 30°C. The range of water activities (aw) was calculated to be between 0.14 and 0.97. The equilibrium moisture content absorption data were fitted to four sorption models that differ in the information that can be obtained from each one: Brunauer‐Emmett‐Teller equation (BET), Guggenheim, Anderson and de Boer (GAB), Smith, and Iglesias‐Chirife. Monolayer moisture content (X0) for UBF and ATBFs were found in the range of 4.06–5.47 (BET model) and 3.87–5.88 (GAB model). The GAB model was found to be the most suitable model to describe the isothermal water sorption of UBF and ATBFs in the intervals proposed of aw. The X0 values of both models (BET and GAB) increase with increasing aw. The Banana flour treated for 11 days (ATBF3) presents the highest value of X0 compared with all samples. This result suggests that mechanism of adsorption of water and molecular structure in ATBFs was affected, attributed to changes in morphology and crystallinity of the samples with treatment.  相似文献   

17.
Moisture adsorption isotherms of plain yogurt, mango–soy-fortified yogurt (MSFY) and MSFY containing 0.4% gelatin stabilizer (MSFYG) powder were determined at 20, 30, 40 and 50°C. A gravimetric static method was used under 0.11–0.81 water activity ranges for the determination of sorption isotherms that were found to be typical type II sigmoid. Experimental data were fitted to five mathematical models viz. modified Henderson, modified Chung–Pfost, Oswin, Smith and Guggenheim–Anderson–de Boer (GAB). It was found that both Oswin and GAB models were acceptable in describing equilibrium moisture content–equilibrium relative humidity (EMC–ERH) relationships for yogurt powder samples over the entire range of temperatures.  相似文献   

18.
The moisture sorption characteristics of tea stored in a chamber regulated by an atomizing humidification system were investigated at 25, 35 and 45 °C for water activity ranging from 0.1 to 0.9. The sorption isotherms of tea were typical type II sigmoidal curves according to BET classification. In both adsorption and desorption, an increase in temperature resulted in lower equilibrium moisture contents at corresponding values of water activity. The sorption isotherms exhibited hysteresis over the whole water activity range. GAB, BET, Henderson, Iglesias and Chirife, Oswin, Peleg, Smith and Caurie models were applied for analysing the experimental data. Nonlinear regression analysis was used for the determination of the parameters in the equations. Estimated parameters and fitting ability for sorption models were evaluated. The Peleg model was found to be the most suitable for describing the relationship between equilibrium moisture content and water activity for the whole range of temperatures and relative humidities studied. The surface area of monolayer was calculated. The BET equation was solved for the monolayer moisture content and the corresponding aw values at which monolayer forms were presented. Sorption isotherm data were used to determine the thermodynamic functions such as isosteric heat of sorption, sorption entropy, spreading pressure, net integral enthalpy and entropy. The Clausius-Clapeyron equation was used to evaluate the isosteric heats of sorption. The isosteric heats of sorption and sorption entropy decreased with increasing moisture content. The heat of desorption was little higher than that of adsorption at low moisture content. The enthalpy-entropy compensation theory could be successfully applied to water sorption by tea. This theory showed that the moisture sorption of tea was governed by enthalpy-controlled mechanisms. The spreading pressure increased with increase in water activity and decreased with increasing temperature. The net integral enthalpy decreased with moisture content while the net integral entropy increased.  相似文献   

19.
Some meat products involve drying previously frozen pork meat, which makes the knowledge of sorption characteristics very important for the design and management of meat dehydration processes. The sorption isotherms of raw pork meat from the Biceps femoris and Semimembranosus muscles were determined at four temperatures: 25, 30, 35 and 40 °C. The experimental results were modelled using the GAB (Guggenheim, Anderson and De Boer) model. The effect of temperature was also taken into account to model the experimental sorption isotherms using four models (GAB, Oswin, Halsey and Henderson). The best results were provided by the GAB model. From the experimental sorption isotherms the isosteric heats of sorption were determined. For a moisture content higher than 0.15 kg water/kg dm, the isosteric heat of meat was similar to the latent heat of vaporization for pure water. For a lower moisture content, an increase in the isosteric heat was observed when the moisture content decreased.  相似文献   

20.
For sorptional data to be useful in simulation and design purposes, they must be represented by equations valid in the conditions usually found in industrial practice. In this regard sorptional models that include the influence of temperature on desorption and sorption equilibrium values are most valuable. In this article, water desorption and sorption isotherms of rose hip fruits (Rosa Eglanteria) were experimentally determined by the gravimetric method, and from these the isosteric heat of sorption was calculated. According to the ANOVA test carried out for this fruits, no significant differences were found between experimental desorption and adsorption isotherms. Seven models were tested to mathematically represent the moisture content as a function of water activity (aw) in the aw range of 0.11 to 0.85 and temperatures of 20, 40, and 60°C, for further use in process simulation.

The five-parameter GAB model was most accurate, with an MRE of ?2,9 % and R2?=?0.989. The values obtained for the isosteric heat of sorption were fitted with a previous published equation, with an MRE%?=??0.05. The isosteric heat of sorption derived from the GAB five parameters equation, for the corresponding monolayer moisture content, only differed by 1.25% with the calculated in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号